ISSN:
eISSN:
Disciplines
(Field of Science):
- mathematics (Natural sciences)
Ministry points: Help
Year | Points | List |
---|---|---|
Year 2025 | 70 | Ministry scored journals list 2024 |
Year | Points | List |
---|---|---|
2025 | 70 | Ministry scored journals list 2024 |
2024 | 70 | Ministry scored journals list 2024 |
2023 | 70 | Ministry Scored Journals List |
2022 | 70 | Ministry Scored Journals List 2019-2022 |
2021 | 70 | Ministry Scored Journals List 2019-2022 |
2020 | 70 | Ministry Scored Journals List 2019-2022 |
2019 | 70 | Ministry Scored Journals List 2019-2022 |
2012 | 45 | A |
2011 | 45 | A |
Model:
Points CiteScore:
Year | Points |
---|---|
Year 2023 | 1.9 |
Year | Points |
---|---|
2023 | 1.9 |
2022 | 2.1 |
2021 | 3.3 |
2020 | 2.7 |
2019 | 2.8 |
2018 | 2.7 |
2017 | 2.8 |
2016 | 4 |
2015 | 3.9 |
2014 | 4.1 |
2013 | 4.3 |
2012 | 3.6 |
2011 | 3.2 |
Impact Factor:
Papers published in journal
Filters
total: 3
Catalog Journals
Year 2019
-
Bernstein-type theorem for ϕ-Laplacian
PublicationIn this paper we obtain a solution to the second-order boundary value problem of the form \frac{d}{dt}\varPhi'(\dot{u})=f(t,u,\dot{u}), t\in [0,1], u\colon \mathbb {R}\to \mathbb {R} with Sturm–Liouville boundary conditions, where \varPhi\colon \mathbb {R}\to \mathbb {R} is a strictly convex, differentiable function and f\colon[0,1]\times \mathbb {R}\times \mathbb {R}\to \mathbb {R} is continuous and satisfies a suitable growth...
-
The Maslov index and the spectral flow—revisited
PublicationWe give an elementary proof of a celebrated theorem of Cappell, Lee and Miller which relates the Maslov index of a pair of paths of Lagrangian subspaces to the spectral flow of an associated path of self-adjoint first-order operators. We particularly pay attention to the continuity of the latter path of operators, where we consider the gap-metric on the set of all closed operators on a Hilbert space. Finally, we obtain from Cappell,...
Year 2008
-
Some remarks on the Euler ring U(G)
PublicationNiech G będzie zwartą grupą Liego i niech U(G) oznacza pierściń Eulera G skonstruoawany przez tom Diecka w [5,6]. Główny wynikpracy (Twierdzenie 4.1) opisuje homomorfizm pierścienia U(SO(3)) w pierścień U(SO(2))indukowany przez włożenie grupy SO(2) w grupę SO(3).
seen 1176 times