ISSN:
eISSN:
Disciplines
(Field of Science):
- architecture and urban planning (Engineering and Technology)
- information and communication technology (Engineering and Technology)
- biomedical engineering (Engineering and Technology)
- civil engineering, geodesy and transport (Engineering and Technology)
- materials engineering (Engineering and Technology)
- mechanical engineering (Engineering and Technology)
- medical biology (Medical and Health Sciences )
- biotechnology (Natural sciences)
(Field of Science)
Ministry points: Help
Year | Points | List |
---|---|---|
Year 2024 | 200 | Ministry scored journals list 2024 |
Year | Points | List |
---|---|---|
2024 | 200 | Ministry scored journals list 2024 |
2023 | 200 | Ministry Scored Journals List |
2022 | 200 | Ministry Scored Journals List 2019-2022 |
2021 | 200 | Ministry Scored Journals List 2019-2022 |
2020 | 200 | Ministry Scored Journals List 2019-2022 |
2019 | 200 | Ministry Scored Journals List 2019-2022 |
2018 | 40 | A |
2017 | 40 | A |
2016 | 40 | A |
2015 | 40 | A |
2014 | 40 | A |
2013 | 40 | A |
2012 | 35 | A |
2011 | 35 | A |
2010 | 32 | A |
Model:
Points CiteScore:
Year | Points |
---|---|
Year 2023 | 11.8 |
Year | Points |
---|---|
2023 | 11.8 |
2022 | 12.8 |
2021 | 14 |
2020 | 13.4 |
2019 | 15.2 |
2018 | 11.8 |
2017 | 8.7 |
2016 | 6.5 |
2015 | 5.3 |
2014 | 4.4 |
2013 | 4 |
2012 | 2.8 |
2011 | 2.1 |
Impact Factor:
Sherpa Romeo:
Papers published in journal
Filters
total: 25
Catalog Journals
Year 2024
-
Can we really solve an arch stability problem?
PublicationWe bring attention to the problem of solving nonlinear boundary-value problems for elastic structures such as arches and shells. Here we discuss a classical problem of a shear-deformable arch postbuckling. Considering a postbuckling behaviour of a circular arch we discuss the possibility to find numerically a solution for highly nonlinear regimes. The main attention is paid to the problem of determination of all solutions. The...
-
Effects of interfacial sliding on anti-plane waves in an elastic plate imperfectly attached to an elastic half-space
PublicationWe study the anti-plane shear waves in a domain consisting of an elastic layer (plate) with a coating attached to an elastic half-space (substrate). We assume an imperfect contact between the layer and the half-space, allowing some sliding. We also assume some elastic bonds between the layer and the substrate. On the free top surface we apply the compatibility conditions within the Gurtin–Murdoch surface elasticity. We found two...
-
M-integral for finite anti-plane shear of a nonlinear elastic matrix with rigid inclusions
PublicationThe path-independent M-integral plays an important role in analysis of solids with inhomogeneities. However, the available applications are almost limited to linear-elastic or physically non-linear power law type materials under the assumption of infinitesimal strains. In this paper we formulate the M-integral for a class of hyperelastic solids undergoing finite anti-plane shear deformation. As an application we consider the problem...
-
On effective surface elastic moduli for microstructured strongly anisotropic coatings
PublicationThe determination of surface elastic moduli is discussed in the context of a recently proposed strongly anisotropic surface elasticity model. The aim of the model was to describe deformations of solids with thin elastic coatings associated with so-called hyperbolic metasurfaces. These metasurfaces can exhibit a quite unusual behaviour and concurrently a very promising wave propagation behaviour. In the model of strongly anisotropic...
-
On mechanics of piezocomposite shell structures
PublicationThis study presents an original and novel investigation into the mechanics of piezo-flexo-magneto-elastic nanocomposite doubly-curved shells (PFMDCSs) and the ability to detect the lower and higher levels of electro-magnetic fields. In this context, by utilizing the first-order shear deformation shell model, stresses and strains are acquired. By imposing Hamilton's principle and the von Kármán approach, the governing equations...
-
Surface finite viscoelasticity and surface anti-plane waves
PublicationWe introduce the surface viscoelasticity under finite deformations. The theory is straightforward generalization of the Gurtin–Murdoch model to materials with fading memory. Surface viscoelasticity may reflect some surface related creep/stress relaxation phenomena observed at small scales. Discussed model could also describe thin inelastic coatings or thin interfacial layers. The constitutive equations for surface stresses are...
Year 2023
-
Anti-plane shear waves in an elastic strip rigidly attached to an elastic half-space
PublicationWe consider the anti-plane shear waves in a domain consisting of an infinite layer with a thin coating lying on an elastic half-space. The elastic properties of the coating, layer, and half-space are assumed to be different. On the free upper surface we assume the compatibility condition within the Gurtin–Murdoch surface elasticity, whereas at the plane interface we consider perfect contact. For this problem there exist two possible...
-
Ellipticity of gradient poroelasticity
PublicationWe discuss the ellipticity properties of an enhanced model of poroelastic continua called dilatational strain gradient elasticity. Within the theory there exists a deformation energy density given as a function of strains and gradient of dilatation. We show that the equilibrium equations are elliptic in the sense of Douglis–Nirenberg. These conditions are more general than the ordinary and strong ellipticity but keep almost all...
-
On a 3D material modelling of smart nanocomposite structures
PublicationSmart composites (SCs) are utilized in electro-mechanical systems such as actuators and energy harvesters. Typically, thin-walled components such as beams, plates, and shells are employed as structural elements to achieve the mechanical behavior desired in these composites. SCs exhibit various advanced properties, ranging from lower order phenomena like piezoelectricity and piezomagneticity, to higher order effects including flexoelectricity...
-
On analysis of nanocomposite conical structures
PublicationThis research examines the analysis of rotating truncated conical baskets reinforced by carbon nanotubes around the two independent axes. A time-dependent analysis is considered, and the nonlinear dynamic governing equations are extracted using the energy method. Carbon nanotubes (CNTs) reinforced the conical basket, and the structure's mechanical properties are determined based on the several distributions of carbon nanotubes....
-
On dynamics of origami-inspired rod
PublicationWe discuss the dynamics of a relatively simple origami-inspired structure considering discrete and continuum models. The latter was derived as a certain limit of the discrete model. Here we analyze small in-plane deformations and related equations of infinitesimal motions. For both models, dispersion relations were derived and compared. The comparison of the dispersion relations showed that the continuum model can capture the behavior...
-
On time-dependent nonlinear dynamic response of micro-elastic solids
PublicationA new approach to the mechanical response of micro-mechanic problems is presented using the modified couple stress theory. This model captured micro-turns due to micro-particles' rotations which could be essential for microstructural materials and/or at small scales. In a micro media based on the small rotations, sub-particles can also turn except the whole domain rotation. However, this framework is competent for a static medium....
Year 2022
-
On a flexomagnetic behavior of composite structures
PublicationThe popularity of the studies is getting further on the flexomagnetic (FM) response of nano-electro-magneto machines. In spite of this, there are a few incompatibilities with the available FM model. This study indicates that the accessible FM model is inappropriate when considering the converse magnetization effect that demonstrates the necessity and importance of deriving a new FM relation. Additionally, the literature has neglected...
-
On the deformation and frequency analyses of SARS-CoV-2 at nanoscale
PublicationThe SARS-CoV-2 virus, which has emerged as a Covid-19 pandemic, has had the most significant impact on people's health, economy, and lifestyle around the world today. In the present study, the SARS-CoV-2 virus is mechanically simulated to obtain its deformation and natural frequencies. The virus under analysis is modeled on a viscoelastic spherical structure. The theory of shell structures in mechanics is used to derive the governing...
Year 2021
-
A variational approach of homogenization of piezoelectric composites towards piezoelectric and flexoelectric effective media
PublicationThe effective piezoelectric properties of heterogeneous materials are evaluated in the context of periodic homogenization, whereby a variational formulation is developed, articulated with the extended Hill macrohomogeneity condition. The entire set of homogenized piezoelectric moduli is obtained as the volumetric averages of the microscopic properties of the individual constituents weighted by the displacement and polarization...
-
On the influence of a surface roughness on propagation of anti-plane short-length localized waves in a medium with surface coating
PublicationWe discuss the propagation of localized surface waves in the framework of the linear Gurtin–Murdoch surface elasticity and taking into account a roughness of a free boundary. We derive a boundary-value problem for anti-plane motions with curvilinear boundary and surface stresses. Using the asymptotic technique developed earlier, we obtain the form of a localized wave and analyze its amplitude evolution. As the main result we present...
Year 2020
-
Flexoelectricity and apparent piezoelectricity of a pantographic micro-bar
PublicationWe discuss a homogenized model of a pantographic bar considering flexoelectricity. A pantographic bar consists of relatively stiff small bars connected by small soft flexoelectric pivots. As a result, an elongation of the bar relates almost to the torsion of pivots. Taking into account their flexoelectric properties we find the corresponding electric polarization. As a results, the homogenized pantographic bar demonstrates piezoelectric...
-
On instabilities and post-buckling of piezomagnetic and flexomagnetic nanostructures
PublicationWe focus on the mechanical strength of piezomagnetic beam-like nanosize sensors during post-buckling. An effective flexomagnetic property is also taken into account. The modelled sensor is selected to be a Euler-Bernoulli type beam. Long-range interactions between atoms result in a mathematical model based on the nonlocal strain gradient elasticity approach (NSGT). Due to possible large deformations within a post-buckling phenomenon,...
-
On stress singularity near the tip of a crack with surface stresses
PublicationIn the framework of the simplified linear Gurtin–Murdoch surface elasticity we discuss a singularity of stresses and displacements in the vicinity of a mode III crack. We show that inhomogeneity in surface elastic properties may significantly affect the solution and to change the order of singularity. We also demonstrate that implicitly or explicitly assumed symmetry of the problem may also lead to changes in solutions. Considering...
-
On the non-linear dynamics of torus-shaped and cylindrical shell structures
PublicationIn this study, the non-linear dynamic analysis of torus-shaped and cylindrical shell-like structures has been studied. The applied material is assumed as the functionally graded material (FGM). The structures are considered to be used for important machines such as wind turbines. The effects of some environmental factors on the analysis like temperature and humidity have been considered. The strain field has been calculated in...
-
Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field
PublicationThis paper considers a single-walled composite nano-shell (SWCNS) exposed in a torsional critical stability situation. As the magnetic field affects remarkably nanostructures in the small size, a three-dimensional magnetic field is assessed which contains magnetic effects along the circumferential, radial and axial coordinates system. Based on the results of the nonlocal model of strain gradient small-scale approach and the first-order...
-
Transverse surface waves on a cylindrical surface with coating
PublicationWe discuss the propagation of transverse surface waves that are so-called whispering-gallery waves along a surface of an elastic cylinder with coating. The coating is modelled in the framework of linearized Gurtin–Murdoch surface elasticity. Other interpretations of the surface shear modulus are given and relations to so-called stiff interface and stiff skin model are discussed. The dispersion relations are obtained and analyzed.
Year 2019
-
Anti-plane surface waves in media with surface structure: Discrete vs. continuum model
PublicationWe present a comparison of the dispersion relations derived for anti-plane surface waves using the two distinct approaches of the surface elasticity vis-a-vis the lattice dynamics. We consider an elastic half-space with surface stresses described within the Gurtin–Murdoch model, and present a formulation of its discrete counterpart that is a square lattice half-plane with surface row of particles having mass and elastic bonds different...
-
Wave transmission across surface interfaces in lattice structures
PublicationWithin the lattice dynamics formulation, we present an exact solution for anti-plane surface waves in a square lattice strip with a surface row of material particles of two types separated by a linear interface. The considered problem is a discrete analog of an elastic half-space with surface stresses modelled through the simplified Gurtin–Murdoch model, where we have an interfacial line separating areas with different surface...
Year 2014
-
Singular curves in the resultant thermomechanics of shells
PublicationSome geometric and kinematic relations associated with the curve moving on the shell base surface are discussed. The extended surface transport relation and the extended surface divergence theorems are proposed for the piecewise smooth tensor fields acting on the regular and piecewise regular surfaces. The recently formulated resultant, two-dimensionally exact, thermodynamic shell relations - the balances of mass, linear and angular...
seen 2686 times