ISSN:
eISSN:
Disciplines
(Field of Science):
- information and communication technology (Engineering and Technology)
- biomedical engineering (Engineering and Technology)
- materials engineering (Engineering and Technology)
- pharmacology and pharmacy (Medical and Health Sciences )
- health sciences (Medical and Health Sciences )
- chemical sciences (Natural sciences)
(Field of Science)
Ministry points: Help
Year | Points | List |
---|---|---|
Year 2024 | 140 | Ministry scored journals list 2024 |
Year | Points | List |
---|---|---|
2024 | 140 | Ministry scored journals list 2024 |
2023 | 140 | Ministry Scored Journals List |
2022 | 140 | Ministry Scored Journals List 2019-2022 |
2021 | 140 | Ministry Scored Journals List 2019-2022 |
2020 | 140 | Ministry Scored Journals List 2019-2022 |
2019 | 140 | Ministry Scored Journals List 2019-2022 |
2018 | 40 | A |
2017 | 40 | A |
2016 | 40 | A |
2015 | 40 | A |
2014 | 40 | A |
2013 | 40 | A |
2012 | 40 | A |
2011 | 40 | A |
2010 | 32 | A |
Model:
Points CiteScore:
Year | Points |
---|---|
Year 2023 | 9.9 |
Year | Points |
---|---|
2023 | 9.9 |
2022 | 10.9 |
2021 | 10 |
2020 | 9.3 |
2019 | 9.2 |
2018 | 9.5 |
2017 | 9.2 |
2016 | 9.6 |
2015 | 9.4 |
2014 | 8.8 |
2013 | 8.1 |
2012 | 7.9 |
2011 | 8 |
Impact Factor:
Sherpa Romeo:
Papers published in journal
Filters
total: 17
Catalog Journals
Year 2018
-
DL_MG: A Parallel Multigrid Poisson and Poisson–Boltzmann Solver for Electronic Structure Calculations in Vacuum and Solution
PublicationThe solution of the Poisson equation is a crucial step in electronic structure calculations, yielding the electrostatic potential -- a key component of the quantum mechanical Hamiltonian. In recent decades, theoretical advances and increases in computer performance have made it possible to simulate the electronic structure of extended systems in complex environments. This requires the solution of more complicated variants of the...
Year 2017
-
Combining the MARTINI and Structure-Based Coarse-Grained Approaches for the Molecular Dynamics Studies of Conformational Transitions in Proteins
Publication -
Dominant Pathways of Adenosyl Radical-Induced DNA Damage Revealed by QM/MM Metadynamics
PublicationBrominated nucleobases sensitize double stranded DNA to hydrated electrons, one of the dominant genotoxic species produced in hypoxic cancer cells during radiotherapy. Such radiosensitizers can therefore be administered locally to enhance treatment efficiency within the solid tumor while protecting the neighboring tissue. When a solvated electron attaches to 8-bromoadenosine, a potential sensitizer, the dissociation of bromide...
-
Electronically Excited States in Solution via a Smooth Dielectric Model Combined with Equation-of-Motion Coupled Cluster Theory
PublicationWe present a method for computing excitation energies for molecules in solvent, based on the combination of a minimal parameter implicit solvent model and the equation-of-motion coupled-cluster singles and doubles method (EOM-CCSD). In this method, the solvent medium is represented by a smoothly varying dielectric function, constructed directly from the quantum mechanical electronic density using only two tunable parameters. The...
-
Performance of the AMOEBA Water Model in the Vicinity of QM Solutes: A Diagnosis Using Energy Decomposition Analysis
PublicationThe importance of incorporating solvent polarization effects into the modeling of solvation processes has been well-recognized, and therefore a new generation of hybrid quantum mechanics/molecular mechanics (QM/MM) approaches that accounts for this effect is desirable. We present a fully self-consistent, mutually polarizable QM/MM scheme using the AMOEBA force field, in which the total energy of the system is variationally minimized...
-
Theoretical Assessment of Excited State Gradients and Resonance Raman Intensities for the Azobenzene Molecule
PublicationThe ground state geometries and vibrational frequencies as well as the excitation energies and excited state gradients of the S 1(nπ*) and S 2(ππ * ) states of trans - and cis -azobenzene are investigated by several DFT methods, namely B3LYP, PBE, M06-2X, CAM-B3LYP, and ω B97X. Excited state properties and in particular gradients are also assessed using the wave function based methods EOM-CCSD and RASPT2/RASSCF. Comparison with...
Year 2015
-
Anharmonic Infrared Spectroscopy through the Fourier Transform of Time Correlation Function Formalism in ONETEP
PublicationDensity functional theory molecular dynamics (DFT-MD) provides an efficient framework for accurately computing several types of spectra. The major benefit of DFTMD approaches lies in the ability to naturally take into account the effects of temperature and anharmonicity, without having to introduce any ad hoc or a posteriori corrections. Consequently, computational spectroscopy based on DFT-MD approaches plays a pivotal role in...
-
Physics-Based Potentials for the Coupling between Backbone- and Side-Chain-Local Conformational States in the United Residue (UNRES) Force Field for Protein Simulations
Publication
Year 2013
-
An Assessment of RASSCF and TDDFT Energies and Gradients on an Organic Donor−Acceptor Dye Assisted by Resonance Raman Spectroscopy
PublicationThe excitation energies and gradients in the ground and the first excited state of a novel donor−(π- bridge)−acceptor 4-methoxy-1,3-thiazole-based chromophore were investigated by means of MS-RASPT2/RASSCF and TDDFT in solution. Within both methods, the excitation energies strongly depend on the employed equilibrium structures, whose differences can be rationalized in terms of bond length alternation indexes. It is shown that functionals with...
-
Improvement of the Treatment of Loop Structures in the UNRES Force Field by Inclusion of Coupling between Backbone- and Side-Chain-Local Conformational States
Publication
Year 2012
-
Simulation of the Opening and Closing of Hsp70 Chaperones by Coarse-Grained Molecular Dynamics
Publication
Year 2011
-
Keep It Flexible: Driving Macromolecular Rotary Motions in Atomistic Simulations with GROMACS
PublicationWe describe a versatile method to enforce the rotation of subsets of atoms, e.g., a protein subunit, in molecular dynamics (MD) simulations. In particular, we introduce a “flexible axis” technique that allows realistic flexible adaptions of both the rotary subunit as well as the local rotation axis during the simulation. A variety of useful rotation potentials were implemented for the GROMACS 4.5 MD package. Application to the...
Year 2010
Year 2009
Year 2008
-
Implementation of a Serial Replica Exchange Method in a Physics-Based United-Residue (UNRES) Force Field
Publication
Year 2007
Year 2006
seen 971 times