ISSN:
eISSN:
Disciplines
(Field of Science):
- biomedical engineering (Engineering and Technology)
- civil engineering, geodesy and transport (Engineering and Technology)
- materials engineering (Engineering and Technology)
- mechanical engineering (Engineering and Technology)
- medical biology (Medical and Health Sciences )
- pharmacology and pharmacy (Medical and Health Sciences )
- biotechnology (Natural sciences)
- chemical sciences (Natural sciences)
- physical sciences (Natural sciences)
(Field of Science)
Ministry points: Help
Year | Points | List |
---|---|---|
Year 2024 | 70 | Ministry scored journals list 2024 |
Year | Points | List |
---|---|---|
2024 | 70 | Ministry scored journals list 2024 |
2023 | 70 | Ministry Scored Journals List |
2022 | 70 | Ministry Scored Journals List 2019-2022 |
2021 | 70 | Ministry Scored Journals List 2019-2022 |
2020 | 70 | Ministry Scored Journals List 2019-2022 |
2019 | 70 | Ministry Scored Journals List 2019-2022 |
2018 | 25 | A |
2017 | 25 | A |
2016 | 20 | A |
2015 | 25 | A |
2014 | 25 | A |
2013 | 25 | A |
2012 | 25 | A |
2011 | 25 | A |
2010 | 32 | A |
Model:
Points CiteScore:
Year | Points |
---|---|
Year 2023 | 5.3 |
Year | Points |
---|---|
2023 | 5.3 |
2022 | 5.1 |
2021 | 5.5 |
2020 | 4.6 |
2019 | 5.2 |
2018 | 4.6 |
2017 | 3.2 |
2016 | 2.4 |
2015 | 1.6 |
2014 | 1.4 |
2013 | 1.7 |
2012 | 1.6 |
2011 | 1.5 |
Impact Factor:
Sherpa Romeo:
Papers published in journal
Filters
total: 2
Catalog Journals
Year 2024
-
Enhancing middle ear implants: Study of biocompatible materials with hydroxyapatite coating
PublicationIn this manuscript, the application of hydroxyapatite coatings to total ossicular reconstruction prostheses (TORPs) using finite element modeling simulations was investigated to enhance the biocompatibility and mechanical performance of these prosthetic devices for middle ear implants. We focused on evaluating biocompatible materials, particularly polyetheretherketone (PEEK) and titanium, by analyzing their mechanical behavior...
Year 2011
-
Modeling of Composite Shells in 6-Parameter Nonlinear Theory with Drilling Degree of Freedom
PublicationWithin the framework of a 6-parameter nonlinear shell theory, with strain measures of Cosserat type, constitutive relations are proposed for thin elastic composite shells. The material law is expressed in terms of five engineering constants of classical anisotropic continuum plus an additional parameter accounting for drilling stiffness. The theory allows for unlimited displacements and rotations. A number of examples are presented...
seen 990 times