ISSN:
eISSN:
Disciplines
(Field of Science):
- automation, electronics, electrical engineering and space technologies (Engineering and Technology)
- mathematics (Natural sciences)
Ministry points: Help
Year | Points | List |
---|---|---|
Year 2025 | 100 | Ministry scored journals list 2024 |
Year | Points | List |
---|---|---|
2025 | 100 | Ministry scored journals list 2024 |
2024 | 100 | Ministry scored journals list 2024 |
2023 | 100 | Ministry Scored Journals List |
2022 | 100 | Ministry Scored Journals List 2019-2022 |
2021 | 100 | Ministry Scored Journals List 2019-2022 |
2020 | 100 | Ministry Scored Journals List 2019-2022 |
2019 | 100 | Ministry Scored Journals List 2019-2022 |
2018 | 30 | A |
2017 | 30 | A |
2016 | 25 | A |
2015 | 25 | A |
2014 | 30 | A |
2013 | 30 | A |
2012 | 25 | A |
2011 | 25 | A |
2010 | 20 | A |
Model:
Points CiteScore:
Year | Points |
---|---|
Year 2023 | 1.7 |
Year | Points |
---|---|
2023 | 1.7 |
2022 | 1.7 |
2021 | 1.9 |
2020 | 2.2 |
2019 | 2.1 |
2018 | 2.1 |
2017 | 1.5 |
2016 | 1.7 |
2015 | 1.4 |
2014 | 1.6 |
2013 | 1.3 |
2012 | 1.1 |
2011 | 1.4 |
Impact Factor:
Sherpa Romeo:
Papers published in journal
Filters
total: 2
Catalog Journals
Year 2024
-
A note on the Morse homology for a class of functionals in Banach spaces involving the 2p-area functional
PublicationIn this paper we show how to construct Morse homology for an explicit class of functionals involving the 2p-area functional. The natural domain of definition of such functionals is the Banach space W_0^{1,2p}(\Omega), where p > n/2 and \Omega \subet R^n is a bounded domain with sufficiently smooth boundary. As W_0^{1,2p}(\Omega) is not isomorphic to its dual space,critical points of such functionals cannot be non-degenerate...
Year 2006
-
Description of the solution set of the von Karman equations for a circular plate in a small neighbourhood of a simple bifurcation point
PublicationW niniejszej pracy badamy równania von Karmana dla cienkiej, sprężystej, kołowej płyty na sprężystym podłożu, poddawanej działaniu sił ściskających wzdłuż brzegu. Są to równania różniczkowe cząstkowe IV rzędu. Stosując metody analizy nieliniowej, opisujemy zbiór rozwiązań równań von Karmana w małym otoczeniu jednokrotnego punktu bifurkacji.Badania były finansowane przez grant nr 1 P03A 042 29.
seen 690 times