Abstract
The paper presents an operational transconductance amplifier (OTA) with low transconductance (0.62–6.28 nS) and low power consumption (28–270 nW) for the low-frequency analog front-ends in biomedical sensor interfaces. The proposed OTA implements an innovative, highly linear voltage-to-current converter based on the channel-length-modulation effect, which can be rail-to-rail driven. At 1-V supply and 1-Vpp asymmetrical input driving, the linearity error in the current-voltage characteristics is 1.5%, while the total harmonic distortion (THD) of the output current is 0.8%. For a symmetrical 2-Vpp input drive, the linearity error is 0.3%, whereas THD reaches 0.2%. The linearity is robust for the mismatch and the process-voltage-and-temperature (PVT) variations. The temperature drift of transconductance is 10 pS/°C. The prototype circuit was fabricated in 180-nanometer CMOS technology.
Citations
-
1 3
CrossRef
-
0
Web of Science
-
1 5
Scopus
Authors (5)
Cite as
Full text
- Publication version
- Accepted or Published Version
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
SENSORS
no. 20,
pages 1 - 15,
ISSN: 1424-8220 - Language:
- English
- Publication year:
- 2020
- Bibliographic description:
- Jakusz J., Jendernalik W., Blakiewicz G., Kłosowski M., Szczepański S.: A 1-nS 1-V Sub-1-µW Linear CMOS OTA with Rail-to-Rail Input for Hz-Band Sensory Interfaces// SENSORS -Vol. 20,iss. 11 (2020), s.1-15
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/s20113303
- Sources of funding:
-
- Project CMOS sensor with smart grid of pixels of layered structure for fast acquisition and simultaneous extraction of information from image
- Statutory activity/subsidy
- Verified by:
- Gdańsk University of Technology
seen 256 times