Abstract
We show the existence of a measurable selector in Carpenter’s Theorem due to Kadison. This solves a problem posed by Jasper and the first author in an earlier work. As an application we obtain a characterization of all possible spectral functions of shift-invariant subspaces of L 2 (R d ) and Carpenter’s Theorem for type I ∞ von Neumann algebras.
Citations
-
1
CrossRef
-
0
Web of Science
-
1
Scopus
Authors (2)
Cite as
Full text
download paper
downloaded 84 times
- Publication version
- Accepted or Published Version
- License
- Copyright (2019 Canadian Mathematical Society)
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES
no. 72,
pages 1505 - 1528,
ISSN: 0008-414X - Language:
- English
- Publication year:
- 2020
- Bibliographic description:
- Bownik M., Szyszkowski M.: A Measurable Selector in Kadison’s Carpenter’s Theorem// CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES -Vol. 72,iss. 6 (2020), s.1505-1528
- DOI:
- Digital Object Identifier (open in new tab) 10.4153/s0008414x19000373
- Verified by:
- Gdańsk University of Technology
seen 171 times
Recommended for you
A NUMERICAL STUDY ON THE DYNAMICS OF DENGUE DISEASE MODEL WITH FRACTIONAL PIECEWISE DERIVATIVE
- J. Khan,
- M. Ur Rahman,
- M. Riaz
- + 1 authors
2022
Global Optimization for Recovery of Clipped Signals Corrupted With Poisson-Gaussian Noise
- A. Marmin,
- A. Węsierska,
- M. Castella
- + 1 authors
2020