A study of the kinetics of bismuth telluride synthesis by an oxide reduction method - Publication - Bridge of Knowledge

Search

A study of the kinetics of bismuth telluride synthesis by an oxide reduction method

Abstract

The kinetics of a reduction of bismuth and tellurium oxides in a hydrogen atmosphere, leading to the formation of thermoelectric bismuth telluride is investigated. The evaluation of the reaction kinetics was based on a thermogravimetric analysis performed in non-isothermal conditions. A non-parametric analysis method and the Friedman method were used for the evaluation of the data. Additionally, for a better understanding of the process, reactions of the reduction of Bi2O3, TeO2 as well as Bi2Te2O7 and Bi2Te4O11, which are formed as intermediate products, were investigated. The activation energies calculated for the reactions were between 56 kJ/mol in the case of the Bi2Te2O7 reduction and 100 kJ/mol for the reduction of mixed oxides. No correlation between the activation energy and the Bi:Te ratio in the reduced material was found. The calculated conversion functions also differed between the investigated reactions. A self-heating process was found for TeO2 and Bi2Te4O11 reduction reactions. In the case of the tellurium oxide, it was assigned to the melting of Te nanoparticles. These effects were also found to enhance the synthesis of Bi2Te3 by the reduction of mixed bismuth and tellurium oxides. The resulting thermoelectric material was found to be completely reduced, with no traces of oxygen in the XPS spectrum. EDX mapping of the cross-section of material’s grains revealed a homogenous distribution of elements in the final product.

Citations

  • 1 1

    CrossRef

  • 0

    Web of Science

  • 1 1

    Scopus

Cite as

Full text

download paper
downloaded 51 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
THERMOCHIMICA ACTA no. 683, pages 1 - 9,
ISSN: 0040-6031
Language:
English
Publication year:
2020
Bibliographic description:
Trawiński B. J., Bochentyn B., Łapiński M. S., Kusz B.: A study of the kinetics of bismuth telluride synthesis by an oxide reduction method// THERMOCHIMICA ACTA -Vol. 683, (2020), s.1-9
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.tca.2019.178437
Bibliography: test
  1. L. Teng, S. Noguchi, S. Seetharaman, Reduction kinetics of FeO-CoO solid solution by hydrogen gas, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 38 (2007) 55-61, https://doi.org/10.1007/s11663-006-9006-1. open in new tab
  2. M. Bahgat, M.-K. Paek, C.-H. Park, J.-J. Pak, Thermal synthesis of nanocrystalline (CoxNi1-x)yFe1-y KOVAR alloy through gaseous reduction of mixed oxides, Mater. Trans. 49 (2008) 208-214, https://doi.org/10.2320/matertrans.MER2007229. open in new tab
  3. J.-J. Pak, M. Bahgat, B.-H. Kim, M.-K. Paek, Low temperature isothermal reduction kinetics of Fe 2 O 3 /NiO mixed oxides and comparative synthesis of Fe1-xNix alloys, Mater. Trans. 49 (2008) 352-359, https://doi.org/10.2320/matertrans. MRA2007203. open in new tab
  4. B. Li, Y. Wei, H. Wang, Non-isothermal reduction kinetics of Fe 2 O 3 -NiO composites for formation of Fe-Ni alloy using carbon monoxide, Trans. Nonferrous Met. Soc. China 24 (2014) 3710-3715, https://doi.org/10.1016/S1003-6326(14)63519-6. open in new tab
  5. D. Jelić, S. Zeljković, B. Škundrić, S. Mentus, Thermogravimetric study of the re- duction of CuO-WO 3 oxide mixtures in the entire range of molar ratios, J. Therm. Anal. Calorim. 132 (2018) 77-90, https://doi.org/10.1007/s10973-017-6921-0. open in new tab
  6. D. Vie, N. Valero, E. Martínez, F. Sapiña, J.-V. Folgado, A. Beltrán, A new approach to the synthesis of intermetallic compounds: mild synthesis of submicrometric CoxMy (M = Mo, W; x:y = 3:1 and 7:6) particles by direct reduction of freeze-dried precursors, J. Mater. Chem. 12 (2002) 1017-1021, https://doi.org/10.1039/ b110798d. open in new tab
  7. S. Gavriliu, M. Lungu, M. Lucaci, E. Enescu, New WAg electrical contacts with ul- trafine structure for low voltage devices, J. Optoelectron. Adv. Mater. 8 (2006) 702-707.
  8. J.C. Juarez, R. Morales, Reduction kinetics of Ag 2 MoO 4 by hydrogen, Metall. Mater. Trans. B 39 (2008) 738-745, https://doi.org/10.1007/s11663-008-9173-3. open in new tab
  9. O.A. Bulavchenko, Z.S. Vinokurov, T.N. Afonasenko, P.G. Tsyrul'nikov, S.V. Tsybulya, A.A. Saraev, V.V. Kaichev, Reduction of mixed Mn-Zr oxides: in situ XPS and XRD studies, Dalton Trans. 44 (2015) 15499-15507, https://doi.org/10. 1039/C5DT01440A. open in new tab
  10. S.B. Sarkar, H.S. Ray, I. Chatterjee, Kinetics of reduction of iron ore-Coal pellets, J. Therm. Anal. 35 (1989) 2461-2469, https://doi.org/10.1007/BF01911910. open in new tab
  11. K. Piotrowski, K. Mondal, H. Lorethova, L. Stonawski, T. Szymański, T. Wiltowski, Effect of gas composition on the kinetics of iron oxide reduction in a hydrogen production process, Int. J. Hydrogen Energy (2005), https://doi.org/10.1016/j. ijhydene.2004.10.013. open in new tab
  12. A. Maleki, N. Hosseini, B. Niroumand, A review on aluminothermic reaction of Al/ ZnO system, Ceram. Int. 44 (2018) 10-23, https://doi.org/10.1016/J.CERAMINT. 2017.09.168. open in new tab
  13. J.J. Ritter, A novel synthesis of polycrystalline bismuth telluride, Inorg. Chem. 33 (1994) 6419-6420, https://doi.org/10.1021/ic00104a065. open in new tab
  14. J.J. Ritter, P. Maruthamuthu, Synthesis of fine-powder polycrystalline Bi−Se−Te, Bi−Sb−Te, and Bi−Sb−Se−Te alloys, Inorg. Chem. 36 (1997) 260-263, https:// doi.org/10.1021/ic960616i. open in new tab
  15. M. Saleemi, M.S. Toprak, S. Li, M. Johnsson, M. Muhammed, Synthesis, processing, and thermoelectric properties of bulk nanostructured bismuth telluride (Bi 2 Te 3 ), J. B. Trawiński, et al. Thermochimica Acta 683 (2020) 178437 open in new tab
  16. Mater. Chem. 22 (2012) 725-730, https://doi.org/10.1039/C1JM13880D. open in new tab
  17. G. Lee, G. Ha, Synthesis of Bi0.5Sb1.5Te3 thermoelectric powder using an oxide- reduction process, J. Korean Inst. Electr. Electron. Mater. Eng. 43 (2014) 1697-1702, https://doi.org/10.1007/s11664-013-2846-y. open in new tab
  18. Y.S. Lim, S.M. Wi, G.G. Lee, Synthesis of n-type Bi2Te1-xSex compounds through oxide reduction process and related thermoelectric properties, J. Eur. Ceram. Soc. 37 (2017) 3361-3366, https://doi.org/10.1016/j.jeurceramsoc.2017.04.020. open in new tab
  19. B. Bochentyn, J. Karczewski, T. Miruszewski, B. Kusz, Structure and thermoelectric properties of Bi-Te alloys obtained by novel method of oxide substrates reduction, J. Alloys Compd. 646 (2015) 1124-1132, https://doi.org/10.1016/J.JALLCOM. 2015.06.127. open in new tab
  20. N. Gostkowska, T. Miruszewski, B. Trawiński, B. Bochentyn, B. Kusz, Structure and thermoelectric properties of Cs-Bi-Te alloys fabricated by different routes of re- duction of oxide reagents, Solid State Sci. 73 (2017) 41-50, https://doi.org/10. 1016/j.solidstatesciences.2017.07.016. open in new tab
  21. B. Trawiński, B. Bochentyn, N. Gostkowska, M. Łapiński, T. Miruszewski, B. Kusz, Structure and thermoelectric properties of bismuth telluride-Carbon composites, Mater. Res. Bull. 99 (2018) 10-17, https://doi.org/10.1016/j.materresbull.2017. 10.043. open in new tab
  22. K.T. Kim, T.S. Lim, G.H. Ha, Improvement in thermoelectric properties of N-Type bismuth telluride nanopowders by hydrogen reduction treatment, Rev. Adv. Mater. Sci. 28 (2011) 196-199. open in new tab
  23. S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta 520 (2011) 1-19, https://doi.org/10.1016/j.tca.2011.03.034. open in new tab
  24. G.B. Taylor, H.W. Starkweather, Reduction of metal oxides by hydrogen, J. Am. Chem. Soc. 52 (1930) 2314-2325, https://doi.org/10.1021/ja01369a019. open in new tab
  25. B. Janković, B. Adnad, S. Mentus, The kinetic analysis of non-isothermal nickel oxide reduction in hydrogen atmosphere using the invariant kinetic parameters method, Thermochim. Acta 456 (2007) 48-55, https://doi.org/10.1016/j.tca.2007. 01.033. open in new tab
  26. J. Šesták, The quandary aspects of non-isothermal kinetics beyond the ICTAC ki- netic committee recommendations, Thermochim. Acta 611 (2015) 26-35, https:// doi.org/10.1016/J.TCA.2015.04.026. open in new tab
  27. M. Maciejewski, Computational aspects of kinetic analysis. Part B: the ICTAC Kinetics Project -the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield, Thermochim. Acta 355 (2000) 145-154, https://doi.org/10.1016/S0040-6031(00)00444-5. open in new tab
  28. K.V. Manukyan, A.G. Avetisyan, C.E. Shuck, H.A. Chatilyan, S. Rouvimov, S.L. Kharatyan, A.S. Mukasyan, Nickel oxide reduction by hydrogen: kinetics and structural transformations, J. Phys. Chem. C 119 (2015) 16131-16138, https://doi. org/10.1021/acs.jpcc.5b04313. open in new tab
  29. V.B. Chernogorenko, K.A. Lynchak, Production of bismuth powder by the reduction of bismuth oxide with a mixture of molecular and atomic hydrogen, Sov. Powder Metall. Met. Ceram. 12 (1973) 360-362, https://doi.org/10.1007/BF00791258. open in new tab
  30. F. Korkmaz, S. Cetinkaya, S. Eroglu, Thermodynamic analysis and reduction of bismuth oxide by ethanol, Metall. Mater. Trans. B 47 (2016) 2378-2385, https:// doi.org/10.1007/s11663-016-0686-x. open in new tab
  31. B. Trawiński, B. Bochentyn, B. Kusz, A study of a reduction of a micro-and nano- metric bismuth oxide in hydrogen atmosphere, Thermochim. Acta 669 (2018) 99-108, https://doi.org/10.1016/J.TCA.2018.09.010. open in new tab
  32. R. Serra, J. Sempere, R. Nomen, A new method for the kinetic study of thermo- analytical data: the non-parametric kinetics method, Thermochim. Acta 316 (1998) 37-45, https://doi.org/10.1016/S0040-6031(98)00295-0. open in new tab
  33. G. Guisbiers, L.C. Mimun, R. Mendoza-Cruz, K.L. Nash, Synthesis of tunable tell- urium nanoparticles, Semicond. Sci. Technol. 32 (2017) 04LT01, , https://doi.org/ 10.1088/1361-6641/aa6173. open in new tab
  34. X. Su, F. Fu, Y. Yan, G. Zheng, T. Liang, Q. Zhang, X. Cheng, D. Yang, H. Chi, X. Tang, Q. Zhang, C. Uher, Self-propagating high-temperature synthesis for com- pound thermoelectrics and new criterion for combustion processing, Nat. Commun. 5 (2014) 4908, https://doi.org/10.1038/ncomms5908. open in new tab
  35. Z. Szaller, L. Pöppl, G. Lovas, I. Dódony, Study of the formation of Bi2Te4O11, J. Solid State Chem. 121 (1996) 251-261, https://doi.org/10.1006/JSSC.1996.0036. open in new tab
  36. G.A. Lovas, I. Dódony, L. Pöppl, Z. Szaller, On the phase transitions of Bi 2 Te 4 O11, J. Solid State Chem. 135 (1998) 175-181, https://doi.org/10.1006/JSSC.1997.7594. open in new tab
  37. O. Masson, P. Thomas, O. Durand, T. Hansen, J. Champarnaud, D. Mercurio, On the structure of the disordered Bi 2 Te 4 O11 phase, J. Solid State Chem. 177 (2004) 2168-2176, https://doi.org/10.1016/J.JSSC.2004.03.010. open in new tab
  38. P. Kumar, P. Srivastava, J. Singh, R. Belwal, M.K. Pandey, K.S. Hui, K.N. Hui, K. Singh, Morphological evolution and structural characterization of bismuth tell- uride (Bi 2 Te 3 ) nanostructures, J. Phys. D Appl. Phys. 46 (2013) 285301, , https:// doi.org/10.1088/0022-3727/46/28/285301. open in new tab
  39. D. Music, K. Chang, P. Schmidt, F.N. Braun, M. Heller, S. Hermsen, P.J. Pöllmann, T. Schulzendorff, C. Wagner, On atomic mechanisms governing the oxidation of Bi 2 Te 3 , J. Phys. Condens. Matter. 29 (2017) 485705, , https://doi.org/10.1088/ 1361-648X/aa945f. open in new tab
  40. S. Liu, N. Peng, Y. Bai, D. Ma, F. Ma, K. Xu, Self-formation of thickness tunable Bi 2 Te 3 nanoplates on thin films with enhanced thermoelectric performance, RSC Adv. 6 (2016) 31668-31674, https://doi.org/10.1039/C5RA26835D. open in new tab
  41. J. Fu, S. Song, X. Zhang, F. Cao, L. Zhou, X. Li, H. Zhang, Bi 2 Te 3 nanoplates and nanoflowers: synthesized by hydrothermal process and their enhanced thermo- electric properties, CrystEngComm 14 (2012) 2159, https://doi.org/10.1039/ c2ce06348d. open in new tab
  42. B. Trawiński, et al. Thermochimica Acta 683 (2020) 178437 open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 243 times

Recommended for you

Meta Tags