ANALYSIS OF THE PROJECT OF INNOVATIVE FLOATING TURBINE - Publication - Bridge of Knowledge

Search

ANALYSIS OF THE PROJECT OF INNOVATIVE FLOATING TURBINE

Abstract

The design of a floating, innovative device for river water aeration and conversion of mechanical energy to electrical energy required the analysis of a number of geometrical and dynamic features. Such an analysis may be carried out on the basis of existing methods of numerical fluid mechanics. Models of pressures, forces and torques characteristic for the conversion of watercourse energy were developed for two basic concepts of innovation. These pressures, forces and torques were calculated, designed, and experimentally determined for the variable geometric form and dimensions of the designed working elements of the innovative roller-blade turbine rotor.

Citations

  • 4

    CrossRef

  • 0

    Web of Science

  • 4

    Scopus

Authors (6)

Cite as

Full text

download paper
downloaded 25 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Polish Maritime Research no. 26, pages 124 - 133,
ISSN: 1233-2585
Language:
English
Publication year:
2019
Bibliographic description:
Tomporowski A., Al - Zubiedy A., Flizikowski J., Kruszelnicka W., Bałdowska-Witos P., Rudnicki J.: ANALYSIS OF THE PROJECT OF INNOVATIVE FLOATING TURBINE// Polish Maritime Research -Vol. 26,iss. 4/104 (2019), s.124-133
DOI:
Digital Object Identifier (open in new tab) 10.2478/pomr-2019-0074
Bibliography: test
  1. Basumatary, M., Biswas, A., Misra, R.D.: CFD analysis of an innovative combined lift and drag (CLD) based modified Savonius water turbine. Energy Convers. Manag. 174, 72-87 (2018). https://doi.org/10.1016/j.enconman.2018.08.025. open in new tab
  2. Sritram, P., Suntivarakorn, R.: Comparative Study of Small Hydropower Turbine Efficiency at Low Head Water. Energy Procedia. 138, 646-650 (2017). https://doi.org/10.1016/ j.egypro.2017.10.181. open in new tab
  3. Jiyun, D., Hongxing, Y., Zhicheng, S., Xiaodong, G.: Development of an inline vertical cross-flow turbine for hydropower harvesting in urban water supply pipes. Renew. Energy. 127, 386-397 (2018). https://doi.org/10.1016/ j.renene.2018.04.070. open in new tab
  4. Viollet, P.-L.: From the water wheel to turbines and hydroelectricity. Technological evolution and revolutions. Comptes Rendus Mécanique. 345, 570-580 (2017). https:// doi.org/10.1016/j.crme.2017.05.016. open in new tab
  5. Ferziger, J.H., Perić, M.: Computational methods for fluid dynamics. Springer, Berlin; New York (2002). open in new tab
  6. Flizikowski, J., Topoliński, T., Opielak, M., Tomporowski, A., Mroziński, A.: Research and analysis of operating characteristics of energetic biomass mikronizer. Eksploat. Niezawodn. 17, 19-26 (2015). open in new tab
  7. Tomporowski, A., Flizikowski, J.: Motion characteristics of a multi-disc grinder of biomass grain. Przem. Chem. 92, 498-503 (2013). open in new tab
  8. Flizikowski, J.B., Kruszelnicka, W., Tomporowski, A., Mrozinski, A.: A study of operating parameters of a roller mill with a new design. AIP Conf. Proc. 2077, 020018 (2019). https://doi.org/10.1063/1.5091879. open in new tab
  9. Tomporowski, A., Flizikowski, J., Kruszelnicka, W.: A new concept of roller-plate mills. Przem. Chem. 96, 1750-1755 (2017). https://doi.org/10.15199/62.2017.8.29. open in new tab
  10. Du, J., Shen, Z., Yang, H.: Effects of different block designs on the performance of inline cross-flow turbines in urban water mains. Appl. Energy. 228, 97-107 (2018). https:// doi.org/10.1016/j.apenergy.2018.06.079. open in new tab
  11. Jiyun, D., Zhicheng, S., Hongxing, Y.: Performance enhancement of an inline cross-flow hydro turbine for power supply to water leakage monitoring system. Energy Procedia. 145, 363-367 (2018). https://doi.org/10.1016/j.egypro.2018.04.065. open in new tab
  12. Kruszelnicka, W., Flizikowski, J., Tomporowski, A.: Auto- monitoring system of grainy biomass comminution technology. IOP Conf. Ser. Mater. Sci. Eng. 393, 012076 (2018). https:// doi.org/10.1088/1757-899X/393/1/012076. open in new tab
  13. Tongphong, W., Saimek, S.: The Design and Development of an Oscillating Water Turbine. Energy Procedia. 52, 552-558 (2014). https://doi.org/10.1016/j.egypro.2014.07.109. open in new tab
  14. Wang, J., Piechna, J., Müller, N.: A novel design of composite water turbine using CFD. J. Hydrodyn. Ser B. 24, 11-16 (2012). https://doi.org/10.1016/S1001-6058(11)60213-8. open in new tab
  15. Tomporowski, A., Flizikowski, J., Kasner, R., Kruszelnicka, W.: Environmental Control of Wind Power Technology. Rocz. Ochr. Śr. 19, 694-714 (2017).
  16. Flaszyński, P.: Wyniki obliczeń przepływowych w następstwie obliczenia sił i momentów obrotowych uzyskiwanych dla założonych parametrów konstrukcyjnych projektowanej turbiny, (2011).
  17. Boxma, O., Zwart, B.: Fluid flow models in performance analysis. Comput. Commun. 131, 22-25 (2018). https:// doi.org/10.1016/j.comcom.2018.07.009. open in new tab
  18. Tang, M., Yuan, L., He, S., Fu, T.: Simplified modeling of YPL fluid flow through a concentric elliptical annular pipe. J. Pet. Sci. Eng. 162, 225-232 (2018). https://doi.org/10.1016/ j.petrol.2017.12.030. open in new tab
  19. Sondermann, C.N., Baptista, R.M., Bastos de Freitas Rachid, F., Bodstein, G.C.R.: Numerical simulation of non-isothermal two-phase flow in pipelines using a two-fluid model. J. Pet. Sci. Eng. 173, 298-314 (2019). https://doi.org/10.1016/ j.petrol.2018.10.018. open in new tab
  20. Rasti, E., Talebi, F., Mazaheri, K.: A turbulent duct flow investigation of drag-reducing viscoelastic FENE-P fluids based on different low-Reynolds-number models. Phys. Stat. Mech. Its Appl. (2019). https://doi.org/10.1016/j.physa.2019.03.083. open in new tab
  21. Spalart, P., Allmaras, S.: A one-equation turbulence model for aerodynamic flows. In: 30th Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics (1992). https://doi.org/10.2514/6.1992-439. open in new tab
  22. Launder, B., Spalding, D.B.: Mathematical Models of Turbulence. Academic Press, London (1972).
  23. Launder, B.E., Sharma, B.I.: Application of the energy- dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transf. 1, 131-137 (1974). open in new tab
  24. Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., Speziale, C.G.: Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids Fluid Dyn. 4, 1510-1520 (1992). https://doi.org/10.1063/1.858424. open in new tab
  25. Wilcox, D.C.: Turbulence Modeling for CFD. D C W Industries, La Cãnada, Calif (2006).
  26. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598-1605 (1994). https://doi.org/10.2514/3.12149. open in new tab
  27. Launder, B.E., Reece, G.J., Rodi, W.: Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68, 537-566 (1975). https://doi.org/10.1017/ S0022112075001814. open in new tab
  28. Gavrilov, A.A., Rudyak, V.Y.: Reynolds-averaged modeling of turbulent flows of power-law fluids. J. Non-Newton. Fluid Mech. 227, 45-55 (2016). https://doi.org/10.1016/ j.jnnfm.2015.11.006. open in new tab
  29. Fletcher, C.A.J.: Computational Techniques for Fluid Dynamics, Vol. 1: Fundamental and General Techniques. Springer-Verlag, NY (1991). open in new tab
  30. Hirsch, C.: Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics - 2nd Edition. Elsevier (2007). open in new tab
  31. Tomporowski, A., Flizikowski, J., Wełnowski, J., Najzarek, Z., Topoliński, T., Kruszelnicka, W., Piasecka, I., Śmigiel, S.: Regeneration of rubber waste using an intelligent grinding system. Przem. Chem. 97, 1659-1665 (2018). https://doi. org/10.15199/62.2018.10.6. open in new tab
  32. Rudnicki, J., Zadrag, R.: Technical State Assessment of Charge Exchange System of Self-Ignition Engine, Based on the Exhaust Gas Composition Testing. Pol. Marit. Res. 24, 203-212 (2017). https://doi.org/10.1515/pomr-2017-0040. open in new tab
  33. Korczewski, Z., Rudnicki, J.: An Energy Approach to the Fatigue Life of Ship Propulsion Systems Marine 2015. In: Salvatore, F., Broglia, R., and Muscari, R. (eds.) VI International Conference on Computational Methods in Marine Engineering -The Conference Proceedings. pp. 490-501. Int Center Numerical Methods Engineering, 08034 Barcelona (2015).
  34. Flizikowski, J.: Apparatus for aerating water courses and disintegrating solid impurities contained in their water, http:// regserv.uprp.pl/register/application?number=P.308679, (1999). open in new tab
  35. Matulewicz, W.: Floating water -power plant. Przegląd Elektrotechniczny. 1, 279-283 (2015). https://doi.org/ 10.15199/48.2015.09.68. open in new tab
  36. Dąbała, K., Krzemień, Z., Olszewski, A.: Micro hydropower station with a spiral turbine. Zesz. Probl. -Masz. Elektr. 129-133 (2009).
  37. Rangan, P.R., Karnyoto, A.S., Ambabunga, Y.A.M., Rambulangi, A.C.: Design of River Flow Floating Portable Micro-Hydro. Int. J. Eng. Tech. 4, 593-597 (2018).
  38. Nguyen, M.H., Jeong, H., Yang, C.: A study on flow fields and performance of water wheel turbine using experimental and numerical analyses. Sci. China Technol. Sci. 61, 464-474 (2018). https://doi.org/10.1007/s11431-017-9146-9. open in new tab
  39. Akimoto, H., Tanaka, K., Uzawa, K.: A conceptual study of floating axis water current turbine for low-cost energy capturing from river, tide and ocean currents. Renew. Energy. 57, 283-288 (2013). https://doi.org/10.1016/ j.renene.2013.02.002. open in new tab
Verified by:
Gdańsk University of Technology

seen 135 times

Recommended for you

Meta Tags