Application of the 2-deoxyglucose scaffold as a new chiral probe for elucidation of the absolute configuration of secondary alcohols - Publication - Bridge of Knowledge

Search

Application of the 2-deoxyglucose scaffold as a new chiral probe for elucidation of the absolute configuration of secondary alcohols

Cite as

Full text

full text is not available in portal

Details

Category:
Magazine publication
Type:
Magazine publication
Published in:
Scientific Reports
ISSN: 2045-2322
Publication year:
2022
DOI:
Digital Object Identifier (open in new tab) https://doi.org/10.1038/s41598-022-21174-8
Bibliography: test
  1. Dale, J. A, Mosher, H. S. Nuclear magnetic resonance enantiomer regents. configurational correlations via nuclear magnetic reso- nance chemical shifts of diastereomeric mandelate, O-methylmandelate, and .alpha.-methoxy-.alpha.-trifluoromethylphenylacetate (MTPA) esters. J. Am. Chem. Soc. 1973, 95, 512-519. https:// doi. org/ 10. 1021/ ja007 83a034. open in new tab
  2. Ohtani, I., Kusumi, T., Ishitsuka, M. O., Kakisawa, H. Absolute configurations of marine diterpenes possessing a xenicane skeleton. An application of an advanced Mosher's method. Tetrahedron Lett. 1989, 30, 3147-3150. https:// doi. org/ 10. 1016/ S0040-4039(00) 99187-1. open in new tab
  3. Seco, J. M., Quiñoá, E. & Riguera, R. The assignment of absolute configuration by NMR. Chem. Rev. 104(1), 17-118. https:// doi. org/ 10. 1021/ cr000 665j (2004). open in new tab
  4. Kusumi, T., Fujita, Y., Ohtani, I. & Kakisawa, H. Anomaly in the modified Mosher's method: Absolute configurations of some marine cembranolides. Tetrahedron Lett. 32, 2923-2926. https:// doi. org/ 10. 1016/ 0040-4039(91) 80650-U (1991). open in new tab
  5. Ohtani, I., Kusumi, T., Kashman, Y., Kakisawa, H. A new aspect of the high-field NMR application of Mosher's method. The absolute configuration of marine triterpene sipholenol A. J. Org. Chem. 1991, 56, 1296-1298. https:// doi. org/ 10. 1021/ jo000 03a067. open in new tab
  6. Ichikawa, A., Hiradate, S., Sugio, A., Kuwahara, S., Watanabe, M., Harada, N. Absolute configuration of 2-methoxy-2-(2-naphthyl) propionic acid as determined by the 1 H NMR anisotropy method. Tetrahedron: Asymmetry 2000, 11, 2669-2675. https:// doi. org/ 10. 1016/ S0957-4166(00) 00233-0. open in new tab
  7. Cimmino, A., Masi, M., Evidente, M., Superchi, S. & Evidente, A. Application of Mosher's method for absolute configuration assignment to bioactive plants and fungi metabolites. J. Pharm. Biomed. Anal. 144, 59-89. https:// doi. org/ 10. 1016/J. JPBA. 2017. 02. 037 (2017). open in new tab
  8. Joshi, B. S., Newton, M. G., Lee, D. W., Barber, A. D. & Pelletier, S. W. Reversal of absolute stereochemistry of the pyrrolo[2,1-b] quinazoline alkaloids vasicine, vasicinone, vasicinol and vasicinolone. Tetrahedron Asymmetry 7, 25-28. https:// doi. org/ 10. 1016/ 0957-4166(95) 00412-2 (1996). open in new tab
  9. Ohtani, I., Kusumi, T., Kashman, Y., Kakisawa, H. High-field FT NMR application of Mosher's method. The absolute configurations of marine terpenoids. J. Am. Chem. Soc. 1991, 113, 4092-4096. https:// doi. org/ 10. 1021/ ja000 11a006. open in new tab
  10. Karkare, S. et al. Cytotoxic cardenolide glycosides of roupellina (Strophanthus) Boivinii from the Madagascar Rainforest. J. Nat. Prod. 70, 1766-1770. https:// doi. org/ 10. 1021/ np070 336n (2007). open in new tab
  11. Lundborg, M., Fontana, C. & Widmalm, G. Automatic structure determination of regular polysaccharides based solely on NMR spectroscopy. Biomacromol 12, 3851-3855. https:// doi. org/ 10. 1021/ bm201 169y (2011). open in new tab
  12. Wenzel, T. J. Differentiation of Chiral Compounds Using NMR Spectroscopy; open in new tab
  13. Yang, S., Bian, G., Sa, R., Song, L. Assigning the absolute configurations of chiral primary amines based on experimental and DFT-calculated 19F nuclear magnetic resonance. Front. Chem. 2019. https:// doi. org/ 10. 3389/ fchem. 2019. 00318. open in new tab
  14. Khatri Chhetri, B. et al. Peyssonnosides A-B, unusual diterpene glycosides with a sterically encumbered cyclopropane motif: structure elucidation using an integrated spectroscopic and computational workflow. J. Org. Chem. 84, 8531-8541. https:// doi. org/ 10. 1021/ acs. joc. 9b008 84 (2019). open in new tab
  15. Seroka, P., Płosiński, M., Czub, J., Sowiński, P. & Pawlak, J. Monosaccharides as internal probes for the determination of the absolute configuration of 2-BUTANOL. Magn. Reson. Chem. 44, 132-138. https:// doi. org/ 10. 1002/ mrc. 1735 (2006). open in new tab
  16. Laskowski, T. et al. Monosaccharides as potential chiral probes for the determination of the absolute configuration of secondary alcohols. J. Nat. Prod. 79, 2797-2804. https:// doi. org/ 10. 1021/ acs. jnatp rod. 6b004 71 (2016). open in new tab
  17. Bennett, C. S. & Galan, M. C. Methods for 2-deoxyglycoside synthesis. Chem. Rev. 118, 7931-7985. https:// doi. org/ 10. 1021/ acs. chemr ev. 7b007 31 (2018). open in new tab
  18. Hou, D. & Lowary, T. L. Recent advances in the synthesis of 2-deoxy-glycosides. Carbohydr. Res. 344(15), 1911-1940. https:// doi. org/ 10. 1016/j. carres. 2009. 07. 013 (2009). open in new tab
  19. Tvaroska, I., Taravel, F. R. Carbon-proton coupling constants in the conformational analysis of sugar molecules. In Advances in Carbohydrate Chemistry and Biochemistry; open in new tab
  20. Horton, D., Ed.; Academic Press, 1995, 51, 15-61. https:// doi. org/ 10. 1016/ S0065- 2318(08) 60191-2. open in new tab
  21. Aytenfisu, A. H., Yang, M. & Mackerell, A. D. CHARMM drude polarizable force field for glycosidic linkages involving pyranoses and furanoses. J. Chem. Theory Comput. 14, 3132-3143. https:// doi. org/ 10. 1021/ acs. jctc. 8b001 75 (2018). open in new tab
  22. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Had, M. & F, D. J. Gaussian 09, Revision D.01. Gaussian Inc., Wallingford 2013.
  23. Vanommeslaeghe, K. et al. CHARMM General Force Field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671-690. https:// doi. org/ 10. 1002/ jcc. 21367 (2010). open in new tab
  24. Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19-25. https:// doi. org/ 10. 1016/J. SOFTX. 2015. 06. 001 (2015). open in new tab
  25. R Core Team R: A Language and Environment for Statistical Computing 2020. open in new tab
  26. Oroshnik, W., Mebane, A. D. The Polyene Antifungal Antibiotics. In Progress in the Chemistry of Organic Natural Products/ Progrès Dans La Chimie Des Substances Organiques Naturelles; open in new tab
  27. Bangert, R., Bonner, J., Brockmann, H., Crombie, L., Jaenicke, L., Kutzbach, C., Mebane, A. D., Muxfeldt, H., Oroshnik, W., Zechmeister, L., Eds.; Fortschritte Der Chemie Organischer Naturstoffe; open in new tab
  28. Springer: Vienna, 1963; pp 17-79. https:// doi. org/ 10. 1007/ 978-3-7091-7149-3_2. open in new tab
  29. Hamilton-Miller, J. Chemistry and biology of the polyene macrolid antibiotics. Bacteriol. Rev. 37, 166-196. https:// doi. org/ 10. 1128/ MMBR. 37.2. 166-196. 1973 (1973). open in new tab
  30. Szwarc, K., Szczeblewski, P., Sowiński, P., Borowski, E. & Pawlak, J. The structure, including stereochemistry, of levorin A1. Magn. Reson. Chem. 53(6), 479-484. https:// doi. org/ 10. 1002/ mrc. 4229 (2015). open in new tab
  31. Szczeblewski, P., Laskowski, T., Kubacki, B., Dziergowska, M., Liczmańska, M., Grynda, J., Kubica, P., Kot-Wasik, A., Borowski, E. Analytical studies on ascosin, candicidin and levorin multicomponent antifungal antibiotic complexes. The stereostructure of ascosin A2. Sci. Rep. 2017 7(1), 40158. https:// doi. org/ 10. 1038/ srep4 0158. open in new tab
  32. Borzyszkowska-Bukowska, J., Szczeblewski, P., Konkol, A., Grynda, J., Szwarc-Karabyka, K. & Laskowski, T. The complete stereo- chemistry of the antibiotic candicidin A3 (syn. ascosin A3, levorin A3). Nat. Prod. Res. 2019, 34, 2869-2879. https:// doi. org/ 10. 1080/ 14786 419. 2019. 15960 95. open in new tab
  33. Szczeblewski, P. et al. Ipertrofan revisited-The proposal of the complete stereochemistry of mepartricin A and B. Molecules 26(5533), 5533. https:// doi. org/ 10. 3390/ molec ules2 61855 33 (2021). open in new tab
Verified by:
No verification

seen 93 times

Meta Tags