Boron-Enhanced Growth of Micron-Scale Carbon-Based Nanowalls: A Route toward High Rates of Electrochemical Biosensing
Abstract
In this study, we have demonstrated the fabrication of novel materials called boron-doped carbon nanowalls (B:CNWs), which are characterized by remarkable electrochemical properties such as high standard rate constant (k°), low peak-to-peak separation value (ΔE) for the oxidation and reduction processes of the [Fe(CN)6]3–/4– redox system, and low surface resistivity. The B:CNW samples were deposited by the microwave plasma-assisted chemical vapor deposition (CVD) using a gas mixture of H2/CH4/B2H6 and N2. Growth results in sharp-edged, flat, and long CNWs rich in sp2 as well as sp3 hybridized phases. The achieved high values of k° (1.1 × 10–2 cm s–1) and ΔE (85 mV) are much lower compared to those of the glassy carbon or undoped CNWs. The enhanced electrochemical performance of the B:CNW electrode facilitates the simultaneous detection of DNA purine bases: adenine and guanine. Both separated oxidation peaks for the independent determination of guanine and adenine were observed by means of cyclic voltammetry or differential pulse voltammetry. It is worth noting that the determined sensitivities and the current densities were about 1 order of magnitude higher than those registered by other electrodes.
Citations
-
7 9
CrossRef
-
0
Web of Science
-
7 6
Scopus
Authors (9)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1021/acsami.6b16860
- License
- Copyright (2017 American Chemical Society)
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
ACS Applied Materials & Interfaces
no. 9,
edition 15,
pages 1 - 10,
ISSN: 1944-8244 - Language:
- English
- Publication year:
- 2017
- Bibliographic description:
- Siuzdak K., Ficek M., Sobaszek M., Ryl J., Gnyba M., Niedziałkowski P., Malinowska N., Karczewski J., Bogdanowicz R.: Boron-Enhanced Growth of Micron-Scale Carbon-Based Nanowalls: A Route toward High Rates of Electrochemical Biosensing// ACS Applied Materials & Interfaces. -Vol. 9, iss. 15 (2017), s.1-10
- DOI:
- Digital Object Identifier (open in new tab) 10.1021/acsami.6b16860
- Verified by:
- Gdańsk University of Technology
seen 248 times
Recommended for you
Comparison of the paracetamol electrochemical determination using boron-doped diamond electrode and boron-doped carbon nanowalls
- P. Niedziałkowski,
- Z. Celuba,
- N. Malinowska
- + 6 authors