Combined effect of nitrogen-doped carbon and NiCo2O4 for electrochemical water splitting - Publication - Bridge of Knowledge

Search

Combined effect of nitrogen-doped carbon and NiCo2O4 for electrochemical water splitting

Abstract

Electrocatalytic water splitting for green hydrogen production necessitates effective electrocatalysts. Currently, commercial catalysts are primarily platinum-based. Therefore, finding catalysts with comparable catalytic activity but lower cost is essential. This paper describes spinel-structured catalysts containing nickel cobaltite NiCo2O4, graphene, and additionally doped with heteroatoms. The structure and elemental composition of the obtained materials were analyzed by research methods such as TEM, SEM-EDX, XRD, XPS, and Raman spectroscopy. The electrochemical measurements showed that hybrid materials containing nickel cobaltite NiCo2O4 doped with graphene are highly active catalysts in the hydrogen evolution reaction (Tafel slopes = 91 mV dec−1, overpotential = 468 mV and onset potential = -339 mV), while in the oxygen evolution reaction (Tafel slopes = 51 mV dec−1, overpotential = 1752 mV and onset potential = 370 mV), bare NiCo2O4 without the addition of carbon has a worse activity (for HER: Tafel slopes = 120 mV dec−1, overpotential - does not achieve and onset potential = -404 mV, for OER: Tafel slopes = 54 mV dec−1, overpotential = 1796 mV and onset potential = 410 mV). In terms of stability, comparable results were obtained for each synthesized compound for both the HER and OER reactions.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Authors (7)

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Scientific Reports no. 14,
ISSN: 2045-2322
Language:
English
Publication year:
2024
Bibliographic description:
Kubińska L., Szkoda M., Skorupska M., Grabowska P., Gajewska M., Lukaszewicz J. P., Ilnicka A.: Combined effect of nitrogen-doped carbon and NiCo2O4 for electrochemical water splitting// Scientific Reports -,iss. 1 (2024),
DOI:
Digital Object Identifier (open in new tab) 10.1038/s41598-024-74031-1
Sources of funding:
  • The research leading to these results has received funding from the Norway Grants 2014–2021 via the National Centre for Research and Development. This work was carried out as a result of the research project no. NOR/SGS/IL-HYDROGEN/0202/2020-00
Verified by:
Gdańsk University of Technology

seen 31 times

Recommended for you

Meta Tags