Corrosion Inhibition Mechanism and Efficiency Differentiation of Dihydroxybenzene Isomers Towards Aluminum Alloy 5754 in Alkaline Media - Publication - Bridge of Knowledge

Search

Corrosion Inhibition Mechanism and Efficiency Differentiation of Dihydroxybenzene Isomers Towards Aluminum Alloy 5754 in Alkaline Media

Abstract

The selection of efficient corrosion inhibitors requires detailed knowledge regarding the interaction mechanism, which depends on the type and amount of functional groups within the inhibitor molecule. The position of functional groups between different isomers is often overlooked, but is no less important, since factors like steric hinderance may significantly affect the adsorption mechanism. In this study, we have presented how different dihydroxybenzene isomers interact with aluminum alloy 5754 surface, reducing its corrosion rate in bicarbonate buffer (pH = 11). We show that the highest inhibition efficiency among tested compounds belongs to catechol at 10 mM concentration, although the differences were moderate. Utilization of novel impedance approach to adsorption isotherm determination made it possible to confirm that while resorcinol chemisorbs on aluminum surface, catechol and quinol follows the ligand exchange model of adsorption. Unlike catechol and quinol, the protection mechanism of resorcinol is bound to interaction with insoluble aluminum corrosion products layer and was only found efficient at concentration of 100 mM (98.7%). The aforementioned studies were confirmed with Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy analyses. There is a significant increase in the corrosion resistance offered by catechol at 10 mM after 24 h exposure in electrolyte: from 63 to 98%, with only negligible changes in inhibitor efficiency observed for resorcinol at the same time. However, in the case of resorcinol a change in electrolyte color was observed. We have revealed that the differentiating factor is the keto-enol tautomerism. The Nuclear Magnetic Resonance (NMR) studies of resorcinol indicate the keto form in structure in presence of NaOH, while the chemical structure of catechol does not change significantly in alkaline environment.

Citations

  • 2 7

    CrossRef

  • 0

    Web of Science

  • 3 0

    Scopus

Cite as

Full text

download paper
downloaded 47 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Materials
ISSN: 1996-1944
Language:
English
Publication year:
2019
Bibliographic description:
Ryl J., Brodowski M., Kowalski M., Lipińska W., Niedziałkowski P., Wysocka J.: Corrosion Inhibition Mechanism and Efficiency Differentiation of Dihydroxybenzene Isomers Towards Aluminum Alloy 5754 in Alkaline Media// Materials. -, iss. 12 (2019), s.3067-
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma12193067
Bibliography: test
  1. Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Butterworth-Heinemann: Oxford, UK;
  2. Boston, MA, USA, 1997; ISBN 978-0-7506-3365-9.
  3. Sanders, R.E. Updated by Staff Aluminum and Aluminum Alloys. In Kirk-Othmer Encyclopedia of Chemical Technology; open in new tab
  4. John Wiley & Sons, Inc., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; ISBN 978-0-471-23896-6. [CrossRef] open in new tab
  5. Macdonald, D.D. Evaluation of Alloy Anodes for Aluminum-Air Batteries. J. Electrochem. Soc. 1988, 135, 2410. [CrossRef] open in new tab
  6. Chu, D.; Savinell, R.F. Experimental data on aluminum dissolution in KOH electrolytes. Electrochim. Acta 1991, 36, 1631-1638. [CrossRef] open in new tab
  7. Pyun, S.-I.; Moon, S.-M. Corrosion mechanism of pure aluminium in aqueous alkaline solution. J. Solid State Electrochem. 2000, 4, 267-272. [CrossRef] open in new tab
  8. Moon, S.-M.; Pyun, S.-I. The corrosion of pure aluminium during cathodic polarization in aqueous solutions. Corros. Sci. 1997, 39, 399-408. [CrossRef] open in new tab
  9. Adhikari, S.; Hebert, K.R. Factors controlling the time evolution of the corrosion potential of aluminum in alkaline solutions. Corros. Sci. 2008, 50, 1414-1421. [CrossRef] open in new tab
  10. Adhikari, S.; Lee, J.; Hebert, K.R. Formation of Aluminum Hydride during Alkaline Dissolution of Aluminum. J. Electrochem. Soc. 2008, 155, C16. [CrossRef] open in new tab
  11. Perrault, G.G. The Role of Hydrides in the Equilibrium of Aluminum in Aqueous Solutions. J. Electrochem. Soc. 1979, 126, 199. [CrossRef] open in new tab
  12. Brown, O.R.; Whitley, J.S. Electrochemical behaviour of aluminium in aqueous caustic solutions. Electrochim. Acta 1987, 32, 545-556. [CrossRef] open in new tab
  13. Li, Q.; Bjerrum, N.J. Aluminum as anode for energy storage and conversion: A review. J. Power Sour. 2002, 110, 1-10. [CrossRef] open in new tab
  14. Liu, Y.; Sun, Q.; Li, W.; Adair, K.R.; Li, J.; Sun, X. A comprehensive review on recent progress in aluminum-air batteries. Gr. Energy Environ. 2017, 2, 246-277. [CrossRef] open in new tab
  15. Yang, S. Design and analysis of aluminum/air battery system for electric vehicles. J. Power Sour. 2002, 112, 162-173. [CrossRef] open in new tab
  16. Zhang, X.; Yang, S.H.; Knickle, H. Novel operation and control of an electric vehicle aluminum/air battery system. J. Power Sour. 2004, 128, 331-342. [CrossRef] open in new tab
  17. Singh, A.; Ansari, K.; Quraishi, M.; Lgaz, H. Effect of Electron Donating Functional Groups on Corrosion Inhibition of J55 Steel in a Sweet Corrosive Environment: Experimental, Density Functional Theory, and Molecular Dynamic Simulation. Materials 2018, 12, 17. [CrossRef] [PubMed] open in new tab
  18. Al-Suhybani, A.A.; Sultan, Y.H.; Hamid, W.A. Corrosion of aluminium in alkaline solutions. Mater. Werkst. 1991, 22, 301-307. [CrossRef] open in new tab
  19. Ebenso, E.E.; Isabirye, D.A.; Eddy, N.O. Adsorption and Quantum Chemical Studies on the Inhibition Potentials of Some Thiosemicarbazides for the Corrosion of Mild Steel in Acidic Medium. IJMS 2010, 11, 2473-2498. [CrossRef] [PubMed] open in new tab
  20. Xhanari, K.; Finšgar, M. Organic corrosion inhibitors for aluminum and its alloys in chloride and alkaline solutions: A review. Arab. J. Chem. 2016, in press. [CrossRef] open in new tab
  21. Wysocka, J.; Krakowiak, S.; Ryl, J. Evaluation of citric acid corrosion inhibition efficiency and passivation kinetics for aluminium alloys in alkaline media by means of dynamic impedance monitoring. Electrochim. Acta 2017, 258, 1463-1475. [CrossRef] open in new tab
  22. Wysocka, J.; Cieslik, M.; Krakowiak, S.; Ryl, J. Carboxylic acids as efficient corrosion inhibitors of aluminium alloys in alkaline media. Electrochim. Acta 2018, 289, 175-192. [CrossRef] open in new tab
  23. Brito, P.S.D.; Sequeira, C.A.C. Organic Inhibitors of the Anode Self-Corrosion in Aluminum-Air Batteries. J. Fuel Cell Sci. Technol. 2013, 11, 011008. [CrossRef] open in new tab
  24. Müller, B. Citric acid as corrosion inhibitor for aluminium pigment. Corros. Sci. 2004, 46, 159-167. [CrossRef] open in new tab
  25. Amin, M.A.; EI-Rehim, S.S.A.; El-Sherbini, E.E.F.; Hazzazi, O.A.; Abbas, M.N. Polyacrylic acid as a corrosion inhibitor for aluminium in weakly alkaline solutions. Part I: Weight loss, polarization, impedance EFM and EDX studies. Corros. Sci. 2009, 51, 658-667. [CrossRef] open in new tab
  26. Kumari, P.D.R.; Nayak, J.; Shetty, A.N. 3-Methyl-4-amino-5-mercapto-1, 2, 4-triazole as corrosion inhibitor for 6061 Al alloy in 0.5 M sodium hydroxide solution. J. Coat. Technol. Res. 2011, 8, 685-695. [CrossRef] open in new tab
  27. Lashgari, M.; Malek, A.M. Fundamental studies of aluminum corrosion in acidic and basic environments: Theoretical predictions and experimental observations. Electrochim. Acta 2010, 55, 5253-5257. [CrossRef] open in new tab
  28. Lashgari, M. Theoretical challenges in understanding the inhibition mechanism of aluminum corrosion in basic media in the presence of some p-phenol derivatives. Electrochim. Acta 2011, 56, 3322-3327. [CrossRef] open in new tab
  29. Al-Amiery, A.; Al-Majedy, Y.; Kadhum, A.; Mohamad, A. New Coumarin Derivative as an Eco-Friendly Inhibitor of Corrosion of Mild Steel in Acid Medium. Molecules 2014, 20, 366-383. [CrossRef] [PubMed] open in new tab
  30. Yang, W.; Wang, Q.; Xu, K.; Yin, Y.; Bao, H.; Li, X.; Niu, L.; Chen, S. Enhanced Corrosion Resistance of Carbon Steel in Hydrochloric Acid Solution by Eriobotrya Japonica Thunb. Leaf Extract: Electrochemical Study. Materials 2017, 10, 956. [CrossRef] open in new tab
  31. Okeniyi, J.; Loto, C.; Popoola, A. Effects of Phyllanthus muellerianus Leaf-Extract on Steel-Reinforcement Corrosion in 3.5% NaCl-Immersed Concrete. Metals 2016, 6, 255. [CrossRef] open in new tab
  32. Fares, M.M.; Maayta, A.K.; Al-Qudah, M.M. Pectin as promising green corrosion inhibitor of aluminum in hydrochloric acid solution. Corros. Sci. 2012, 60, 112-117. [CrossRef] open in new tab
  33. Abdel-Gaber, A.M.; Abd-El-Nabey, B.A.; Sidahmed, I.M.; El-Zayady, A.M.; Saadawy, M. Inhibitive action of some plant extracts on the corrosion of steel in acidic media. Corros. Sci. 2006, 48, 2765-2779. [CrossRef] open in new tab
  34. Abiola, O.K.; Otaigbe, J.O.E.; Kio, O.J. Gossipium hirsutum L. extracts as green corrosion inhibitor for aluminum in NaOH solution. Corros. Sci. 2009, 51, 1879-1881. [CrossRef] open in new tab
  35. Abiola, O.K.; Oforka, N.C.; Ebenso, E.E.; Nwinuka, N.M. Eco-friendly corrosion inhibitors: The inhibitive action of Delonix Regia extract for the corrosion of aluminium in acidic media. Anti-Corros. Methods Mater. 2007, 54, 219-224. [CrossRef] open in new tab
  36. Azzaoui, K.; Mejdoubi, E.; Jodeh, S.; Lamhamdi, A.; Rodriguez-Castellón, E.; Algarra, M.; Zarrouk, A.; Errich, A.; Salghi, R.; Lgaz, H. Eco friendly green inhibitor Gum Arabic (GA) for the corrosion control of mild steel in hydrochloric acid medium. Corros. Sci. 2017, 129, 70-81. [CrossRef] open in new tab
  37. de Souza, F.S.; Spinelli, A. Caffeic acid as a green corrosion inhibitor for mild steel. Corros. Sci. 2009, 51, 642-649. [CrossRef] open in new tab
  38. Abiola, O.K.; Otaigbe, J.O.E. The effects of Phyllanthus amarus extract on corrosion and kinetics of corrosion process of aluminum in alkaline solution. Corros. Sci. 2009, 51, 2790-2793. [CrossRef] open in new tab
  39. Singh, A.; Ahamad, I.; Quraishi, M.A. Piper longum extract as green corrosion inhibitor for aluminium in NaOH solution. Arab. J. Chem. 2016, 9, S1584-S1589. [CrossRef] open in new tab
  40. Ryl, J.; Wysocka, J.; Cieslik, M.; Gerengi, H.; Ossowski, T.; Krakowiak, S.; Niedzialkowski, P. Understanding the origin of high corrosion inhibition efficiency of bee products towards aluminium alloys in alkaline environments. Electrochim. Acta 2019, 304, 263-274. [CrossRef] open in new tab
  41. Talati, J.D.; Modi, R.M. O-Substituted Phenols as Corrosion Inhibitors for Aluminium-Copper Alloy in Sodium Hydroxide. Br. Corros. J. 1977, 12, 180-184. [CrossRef] open in new tab
  42. Lakshmi, D.; Rajendran, S.; Sathiabama, J. Inhibition of Corrosion of Aluminium in Aqueous Solution at pH11 by Resorcinol-Zn2+ System. Int. J. Nano Corr. Sci. Eng. 2016, 3, 26-42.
  43. Fouda, A.S.; Elasmy, A.A. Efficiency of some phenylthiosemicarbazide derivatives in retarding the dissolution of Al in NaOH solution. Mon. Chem. 1987, 118, 709-716. [CrossRef] open in new tab
  44. Hassan, S.M.; Moussa, M.N.; El-Tagoury, M.M.; Radi, A.A. Aromatic acid derivatives as corrosion inhibitors for aluminium in acidic and alkaline solutions. Anti-Corros. Methods Mater. 1990, 37, 8-11. [CrossRef] open in new tab
  45. Obi-Egbedi, N.O.; Obot, I.B.; El-Khaiary, M.I. Quantum chemical investigation and statistical analysis of the relationship between corrosion inhibition efficiency and molecular structure of xanthene and its derivatives on mild steel in sulphuric acid. J. Mol. Struct. 2011, 1002, 86-96. [CrossRef] open in new tab
  46. Khaled, K.F. Electrochemical investigation and modeling of corrosion inhibition of aluminum in molar nitric acid using some sulphur-containing amines. Corros. Sci. 2010, 52, 2905-2916. [CrossRef] open in new tab
  47. Ramesh Babu, B.; Holze, R. Corrosion and hydrogen permeation inhibition for mild steel in HCl by isomers of organic compounds. Br. Corros. J. 2000, 35, 204-209. [CrossRef] open in new tab
  48. Talati, J.D.; Desai, M.N.; Shah, N.K. Ortho-, meta-, and para-aminophenol-N-salicylidenes as corrosion inhibitors of zinc in sulfuric acid. Anti-Corros. Meth Mater. 2005, 52, 108-117. [CrossRef] open in new tab
  49. Ryl, J.; Darowicki, K.; Slepski, P. Evaluation of cavitation erosion-corrosion degradation of mild steel by means of dynamic impedance spectroscopy in galvanostatic mode. Corros. Sci. 2011, 53, 1873-1879. [CrossRef] open in new tab
  50. Gerengi, H.; Darowicki, K.; Slepski, P.; Bereket, G.; Ryl, J. Investigation effect of benzotriazole on the corrosion of brass-MM55 alloy in artificial seawater by dynamic EIS. J. Solid State Electrochem. 2010, 14, 897-902. [CrossRef] open in new tab
  51. Gerengi, H. The Use of Dynamic Electrochemical Impedance Spectroscopy in Corrosion Inhibitor Studies. Prot. Met. Phys. Chem. Surf. 2018, 54, 536-540. [CrossRef] open in new tab
  52. Hirschorn, B.; Orazem, M.E.; Tribollet, B.; Vivier, V.; Frateur, I.; Musiani, M. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim. Acta 2010, 55, 6218-6227. [CrossRef] open in new tab
  53. Talati, J.D.; Modi, R.M. Dihydroxy-benzenes as Corrosion Inhibitors for Aluminium-Copper Alloy in Sodium Hydroxide. Br. Corros. J. 1975, 10, 103-106. [CrossRef] open in new tab
  54. Suresh, S.; Srivastava, V.C.; Mishra, I.M. Adsorption of catechol, resorcinol, hydroquinone, and their derivatives: A review. Int. J. Energy Environ. Eng. 2012, 3, 32. [CrossRef] open in new tab
  55. Wysocka, J.; Krakowiak, S.; Ryl, J.; Darowicki, K. Investigation of the electrochemical behaviour of AA1050 aluminium alloy in aqueous alkaline solutions using Dynamic Electrochemical Impedance Spectroscopy. J. Electroanal. Chem. 2016, 778, 126-136. [CrossRef] open in new tab
  56. Djordjevic, I.; Choudhury, N.R.; Dutta, N.K.; Kumar, S. Synthesis and characterization of novel citric acid-based polyester elastomers. Polymer 2009, 50, 1682-1691. [CrossRef] open in new tab
  57. Amin, M.A.; Ahmed, E.M.; Mostafa, N.Y.; Alotibi, M.M.; Darabdhara, G.; Das, M.R.; Wysocka, J.; Ryl, J.; Abd El-Rehim, S.S. Aluminum Titania Nanoparticle Composites as Nonprecious Catalysts for Efficient Electrochemical Generation of H 2 . ACS Appl. Mater. Interfaces 2016, 8, 23655-23667. [CrossRef] [PubMed] open in new tab
  58. Niedziałkowski, P.; Ossowski, T.; Zięba, P.; Cirocka, A.; Rochowski, P.; Pogorzelski, S.J.; Ryl, J.; Sobaszek, M.; Bogdanowicz, R. Poly-l-lysine-modified boron-doped diamond electrodes for the amperometric detection of nucleic acid bases. J. Electroanal. Chem. 2015, 756, 84-93. [CrossRef] Materials 2019, 12, 3067 20 of 20 open in new tab
  59. McCafferty, E.; Wightman, J.P. Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf. Interface Anal. 1998, 26, 549-564. [CrossRef] open in new tab
  60. Ryl, J.; Wysocka, J.; Jarzynka, M.; Zielinski, A.; Orlikowski, J.; Darowicki, K. Effect of native air-formed oxidation on the corrosion behavior of AA 7075 aluminum alloys. Corros. Sci. 2014, 87, 150-155. [CrossRef] open in new tab
  61. Wloka, J.; Bürklin, G.; Virtanen, S. Influence of second phase particles on initial electrochemical properties of AA7010-T76. Electrochim. Acta 2007, 53, 2055-2059. [CrossRef] open in new tab
  62. Yasakau, K.A.; Zheludkevich, M.L.; Lamaka, S.V.; Ferreira, M.G.S. Role of intermetallic phases in localized corrosion of AA5083. Electrochim. Acta 2007, 52, 7651-7659. [CrossRef] open in new tab
  63. Goswami, R.; Spanos, G.; Pao, P.S.; Holtz, R.L. Precipitation behavior of the ß phase in Al-5083. Mater. Sci. Eng. A 2010, 527, 1089-1095. [CrossRef] open in new tab
  64. Novak, P.; Skare, D.; Sekusak, S. Substituent, temperature and solvent effects on keto-enol equilibrium in symmetrical pentane-1,3,5-triones. Nuclear magnetic resonance and theoretical studies. Croat. Chem. Acta 2000, 73, 1153-1170.
  65. Billman, J.H.; Sojka, S.A.; Taylor, P.R. Investigations of keto-enol tautomerism by carbon-13 nuclear magnetic resonance spectroscopy. J. Chem. Soc. Perkin Transection 2 1972, 2034-2035. [CrossRef] open in new tab
  66. Gaca, K.Z.; Parkinson, J.A.; Sefcik, J. Kinetics of early stages of resorcinol-formaldehyde polymerization investigated by solution-phase nuclear magnetic resonance spectroscopy. Polymer 2017, 110, 62-73. [CrossRef] open in new tab
  67. Giles, R.; Kim, I.; Chao, W.E.; Moore, J.; Jung, K.W. Dual Studies on a Hydrogen-Deuterium Exchange of Resorcinol and the Subsequent Kinetic Isotope Effect. J. Chem. Educ. 2014, 91, 1220-1223. [CrossRef] open in new tab
  68. Lambert, F.; Ellenberger, M.; Merlin, L.; Cohen, Y. NMR study of catechol and some catecholamines. Org. Magn. Reson. 1975, 7, 266-273. [CrossRef] open in new tab
  69. Luisier, N.; Schenk, K.; Severin, K. A four-component organogel based on orthogonal chemical interactions. Chem. Commun. 2014, 50, 10233-10236. [CrossRef] [PubMed] open in new tab
  70. Kim, H.; Gao, J.; Burgess, D.J. Evaluation of solvent effects on protonation using NMR spectroscopy: Implication in salt formation. Int. J. Pharm. 2009, 377, 105-111. [CrossRef] [PubMed] open in new tab
  71. Pretsch, E.; Buhlmann, P.; Badertscher, M. Structure Determination of Organic Compounds; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-540-93809-5. open in new tab
  72. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 141 times

Recommended for you

Meta Tags