Abstract
In this work, a computationally efficient method based on data driven surrogate models is pro-posed for the design optimization procedure of a Frequency Selective Surface (FSS)-based filtering antenna (Filtenna). A Filtenna acts as a as module that simultaneously pre-filters unwanted sig-nals, and enhances the desired signals at the operating frequency. However, due to a typically large number of design variables of FSS unit elements, and their complex interrelations affecting the scattering response, FSS optimization is a challenging task. Herein, a deep-learning-based al-gorithm, Modified-Multi-Layer-Perceptron (M2LP), is developed to render an accurate behavioral model of the unit cell. Subsequently, the M2LP model is applied to optimize FSS elements being parts of the Filtenna under design. The exemplary device operates at 5 GHz to 7 GHz band. The numerical results demonstrate that the presented approach allows for almost 90% reduction of the computational cost of the optimization process as compared to direct EM-driven design. At the same time, physical measurements of the fabricated Filtenna prototype corroborate the relevance of the proposed methodology. One of the important advantages of our technique is that the unit cell model can be re-used to design FSS and Filtenna operating a various operating bands without incurring any extra computational expenses.
Citations
-
1 2
CrossRef
-
0
Web of Science
-
1 5
Scopus
Authors (6)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/electronics12071584
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Electronics
no. 12,
ISSN: 2079-9292 - Language:
- English
- Publication year:
- 2023
- Bibliographic description:
- Mahouti P., Belen A., Tari O., Belen M., Karahan S., Kozieł S.: Data-Driven Surrogate-Assisted Optimization of Metamaterial-Based Filtenna Using Deep Learning// Electronics -Vol. 12,iss. 7 (2023), s.1584-
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/electronics12071584
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 97 times
Recommended for you
Accurate Modeling of Frequency Selective Surfaces Using Fully-Connected Regression Model with Automated Architecture Determination and Parameter Selection Based on Bayesian Optimization
- N. Calik,
- M. Belen,
- P. Mahouti
- + 1 authors
Specification-Oriented Automatic Design of Topologically Agnostic Antenna Structure
- A. Bekasiewicz,
- M. Dzwonkowski,
- T. Dhaene
- + 1 authors
Novel Versatile Topologies and Design Optimization of Wide-Bandstop Frequency Selective Surfaces for X-Band, Ku-Band and Millimeter-Wave Applications
- R. Aziz,
- S. Kozieł,
- L. Leifsson
- + 1 authors