Determination of moisture resistance of covered electrodes according to PN-EN ISO 14372 - Publication - Bridge of Knowledge

Search

Determination of moisture resistance of covered electrodes according to PN-EN ISO 14372

Abstract

Moisture present in the electrode covering is one of the sources of diffusible hydrogen in welded joints. In order to study the diffusible hydrogen content in deposited metal, a stand for moisturizing covered electrodes, in accordance with the PN-EN ISO 14372 standard, was built. After the stand was completed, a test of moisturizing the electrodes was carried out and measurements of the diffusible hydrogen content in deposited metal using the mercury method (according to PN-EN ISO 3690) were conducted. The research was aimed at verifying the correctness of the operation of test stand and indirect determination of the influence of storage of rutile-cellulose and cellulose electrodes under fixed conditions on the degree of moisturizing of the weld metal. Both tested electrode grades belong to the group of electrodes with a standard covering.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cite as

Full text

download paper
downloaded 75 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Przegląd Spawalnictwa pages 23 - 30,
ISSN: 0033-2364
Language:
English
Publication year:
2019
Bibliographic description:
Mielnicka K., Wolski A., Świerczyńska A., Rogalski G., Fydrych D.: Determination of moisture resistance of covered electrodes according to PN-EN ISO 14372// Przegląd Spawalnictwa -,iss. 7 (2019), s.23-30
DOI:
Digital Object Identifier (open in new tab) 10.26628/wtr.v91i7.1049
Bibliography: test
  1. Reisgen U., Willms K., Wieland S., Influence of storage conditions on aluminum 4043A welding wires, Welding Journal, 2017, Vol. 96(6). [Hyperlink] open in new tab
  2. Świerczyńska A., Effect of technological factors on diffusing hydrogen content in the weld deposit of rutile flux- cored wires, Institute of Welding Bulletin, 2013, Vol. 57(5). [Hyperlink] open in new tab
  3. Harwig D.D., Longenecker D.P., Cruz J.H., Effects of welding parameters and electrode atmospheric exposure on the diffusible hydrogen content of gas flux cored arc welds, Welding Journal, 1999, Vol. 78(9). [Hyperlink]
  4. Schaupp T., Rhode M., Kannengiesser T., Influence of welding parameters on diffusible hydrogen content in high- strength steel welds using modified spray arc process, Welding in the World, 2018, Vol. 62(1). open in new tab
  5. Chandan P., Mahapatra M.M., Kumar P., Saini N., Some studies on P91 steel and their weldments, Journal of Alloys and Compounds, 2018, Vol. 743.
  6. Fydrych D., Tomków J., Świerczyńska A., Determination of diffusible hydrogen content in the deposited metal of rutile electrodes by the glycerin method, Metallurgy and Foundry Engineering,2013, Vol. 39(1). [CrossRef] open in new tab
  7. Fydrych D., Świerczyńska A., Landowski M., Preliminary studies of seamless flux cored wires stored in extreme conditions, Metallurgy and Foundry Engineering, 2016, Vol. 40(4). [CrossRef] open in new tab
  8. Gürel C., İpekoğlu G., Recent developments in joining of aluminum alloys, The International Journal of Advanced Manufacturing Technology, 2017, Vol. 91(5-8)
  9. Fydrych D., Świerczyńska A., Tomków J., Diffusible hydrogen control in flux cored arc welding process, Key Engineering Materials, 2014, 597. [CorssRef] open in new tab
  10. Tomków J., Fydrych D., Rogalski G., Łabanowski J., Effect of the welding environment and storage time of electrodes on the diffusible hydrogen content in deposited metal, Revista de Metalurgia, 2019, 55, e140. [CrossRef] open in new tab
  11. Fydrych D., Łabanowski J., Determining diffusible hydrogen amounts using the mercury method, Welding International, 2012, Vol. 26(9). [CrossRef] open in new tab
  12. Kiefer J.H., Effects of moisture contamination and welding parameters on diffusible hydrogen, Welding Journal, 1996, Vol. 75(5). [CrossRef] open in new tab
  13. Fydrych D., Łabanowski J., An experimental study of high-hydrogen welding processes, Revista de Metalurgia, 2015, Vol. 51(4). [CrossRef] open in new tab
  14. Bracarense A.Q., Souza R, Costa M.C.M., Faria P.E., Liu S., Welding current effect on diffusible hydrogen content in flux cored arc weld metal, Journal of the Brazilian Society of Mechanical Sciences 2002, Vol. 24(4). [CrossRef] open in new tab
  15. Maria G.G.B., Claeys L., Depover T., Santos D.B., Verbeken K., The hydrogen induced mechanical degradation of duplex stainless steel, Steel Research International, 2019, Vol. 90(1). [CrossRef] open in new tab
  16. Claeys L., Depover T, De Graeve I., Verbeken K., Electrochemical hydrogen charging of duplex stainless steel, Corrosion, 2018, Vol. 75(8). [CrossRef] open in new tab
  17. Liu Q., Zhou Q., Venezuela J., Zhang M., Atrens A., Evaluation of the influence of hydrogen on some commercial DP, Q&P and TWIP advanced high-strength steels during automobile service, Engineering Failure Analysis, 2018, Vol. 94. [CrossRef] open in new tab
  18. Ohaeri E., Eduok U., Szpunar J., Hydrogen related degradation in pipeline steel: A review, International Journal of Hydrogen Energy, 2018, Vol. 43(31).[CrossRef] open in new tab
  19. Padhy G.K., Ramasubbu V., Albert S.K., Murugesan N., Ramesh C., Hot extraction of diffusible hydrogen and its measurement using a hydrogen sensor, Welding in the World, 2012, Vol. 56(7). [CrossRef] open in new tab
  20. Łomozik M., Metaloznawstwo i spawalność metali, Materiały szkoleniowe Instytutu Spawalnictwa w Gliwicach, Gliwice 1997.
  21. Kotecki D.J., Hydrogen reconsidered, Welding Journal, 1992, Vol. 71(8). open in new tab
  22. Ramirez J.E., Johnson M., Effect of welding parameters and electrode condition on alloying enrichment of weld metal deposited with coated cellulosic electrodes, Welding Journal, 2010, Vol. 89(11). [Hyperlink]
  23. Pakos R., Właściwości złączy spawanych wykonanych elektrodami zasadowymi i celulozowymi, Welding Technology Review, 2011, Vol. 38(5). [CrossRef] open in new tab
  24. Felber S., Mechanical-technological and fracture mechanical properties of the high grade pipeline-steel X80 with results of different pipeline-projects, Welding in the World, 2008, Vol. 52(5-6). [CrossRef] open in new tab
  25. Felber S., Welding of the high grade pipeline-steel X80 and description of different pipeline-projects, Welding in the World, 2008, Vol. 52(5-6). [CrossRef] open in new tab
  26. Łędzki A., Michaliszyn A., Klimczyk A., Metalurgia ekstrakcyjna żelaza /do użytku wewnętrznego AGH/
  27. Wciseł J., Budowa stanowiska do nawilżania elektrod otulonych zgodnie z normą PN EN ISO 14372:2005, Projekt inżynierski wykonany pod opieką dr. hab. inż. G. Rogalskiego, Politechnika Gdańska 2018.
  28. Wolski A., Badania nasiąkliwości elektrod otulonych, Projekt inżynierski wykonany pod opieką dr. hab. inż. G. Rogalskiego, Politechnika Gdańska 2018.
  29. Welding consumables. Catalog. Lincoln Electric, 2017. open in new tab
Verified by:
Gdańsk University of Technology

seen 111 times

Recommended for you

Meta Tags