Dual-wavelength laser polarimeter and its performance capabilities - Publication - Bridge of Knowledge

Search

Dual-wavelength laser polarimeter and its performance capabilities

Abstract

A dual-wavelength optical polarimetric approach has been proposed as a means of elimination of the systematic errors and estimation of the optical anisotropy parameters for a single DKDP crystal. Our HAUP-related polarimeter uses two semiconductor lasers with the neighbouring wavelengths of 635 nm and 650 nm. Based on the temperature dependence analysis of small characteristic azimuths of light polarization with respect to the axis of the sample, we found the parameters of imperfections of polarization system. We acquired eigen waves ellipticities in a DKDP crystal and found perpendicular to the optic axis value of the optical rotatory power. Our results correlate positively with previously measured data for KDP crystals.

Citations

  • 7

    CrossRef

  • 0

    Web of Science

  • 7

    Scopus

Authors (3)

Cite as

Full text

download paper
downloaded 36 times
Publication version
Accepted or Published Version
License
Copyright (2017 Association of Polish Electrical Engineers (SEP))

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
OPTO-ELECTRONICS REVIEW no. 25, edition 1, pages 6 - 9,
ISSN: 1230-3402
Language:
English
Publication year:
2017
Bibliographic description:
Shopa M., Shopa Y., Ftomyn N.: Dual-wavelength laser polarimeter and its performance capabilities// OPTO-ELECTRONICS REVIEW. -Vol. 25, iss. 1 (2017), s.6-9
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.opelre.2017.01.001
Bibliography: test
  1. J. Kobayashi, Y. Uesu, A new optical method and apparatus HAUP for measuring simultaneously optical activity and birefringence of crystals. I. Principles and construction, J. Appl. Cryst. 16 (1983) 204-211. open in new tab
  2. J. Kobayashi, Y. Uesu, H.J. Takahashi, A new optical method and apparatus HAUP for measuring simultaneously optical activity and birefringence of crystals. II. Application to triglycine-sulphuric acid (NH2CH2CO2H)3H2SO4, J. Appl. Cryst. 16 (1983) 12-219. open in new tab
  3. J. Kobayashi, T. Asahi, S. Takahashi, A.M. Glazer, Evaluation of the systematic errors of polarimetric measurements: application to measurements of the gyration tensors of ␣-quartz by the HAUP, J. Appl. Cryst. 21 (1988) 479-484. open in new tab
  4. J. Kobayashi, T. Asahi, M. Sakurai, M. Takahashi, K. Okubo, Optical properties of superconducting Bi2Sr2CaCu2O8, Phys. Rev. B 53 (1996) 11784-11795. open in new tab
  5. J. Moxon, A. Renshaw, Improved techniques for the simultaneous measurement of optical activity and circular dichroism in birefringent crystal sections, Zeits. Krist. 185 (1988) 636-655. open in new tab
  6. J. Moxon, A. Renshaw, The simultaneous measurements of optical activity and circular dichroism in birefringent linearly dichroic crystal sections: I. Introduction and description of the method, J. Phys.: Condens. Matter 2 (1990) 6807-6837. open in new tab
  7. E. Dijkstra, H. Meekes, M. Kremers, The high-accuracy universal polarimeter, J. Phys. D 24 (1991) 1861-1868. open in new tab
  8. C.L. Folcia, J. Ortega, J. Etxebarria, Study of the systematic errors in the HAUP measurements, J. Phys. D: Appl. Phys. 32 (1999) 2266-2277. open in new tab
  9. C. Hernández-Rodríguez, P. Gomez-Garrido, S. Veintemillas, Systematic errors in the high-accuracy universal polarimeter: application to the determining temperature-dependent optical anisotropy of KDC and KDP crystals, J. Appl. Cryst. 33 (2000) 938-946. open in new tab
  10. J. Herreros-Cedrés, C. Hernández-Rodríguez, R. Guerrero-Lemus, Temperature-dependent gyration tensor of LiIO3 single crystal using the high-accuracy universal polarimeter, J. Appl. Cryst. 35 (2002) 228-232. open in new tab
  11. W. Kaminsky, A.M. Glazer, Measurement of optical rotation in crystals, Ferroelectrics 183 (1996) 133-141. open in new tab
  12. W. Kaminsky, Experimental and phenomenological aspects of circular birefringence and related properties in transparent crystals, Rep. Prog. Phys. 63 (2000) 1575-1640. open in new tab
  13. J. Moxon, A. Renshaw, I. Tebbutt, The simultaneous measurement of optical activity and circular dichroism in birefringent linearly dichroic crystal sections. II. Description of apparatus and results for quartz, nickel sulphate hexahydrate and benzyl, J. Phys. D 24 (1991) 1187-1192. open in new tab
  14. R.J. Lingard, A.R. Renshaw, Determining the sign of optical rotation in linearly birefringent crystal sections, J. Appl. Cryst. 27 (1994) 647-649. open in new tab
  15. Y. Shopa, M. Kravchuk, Study of optical activity in La3Ga5SiO14 with high-accuracy polarimetric methods, Phys. Stat. Sol. A 158 (1996) 275-280.
  16. Y. Shopa, High accuracy polarimetry and its application, Ukr. J. Phys. Opt. 2 (2001) 58-74. open in new tab
  17. Y. Shopa, N. Ftomyn, Polarimetric studies of linear dichroism in Cr-doped gallogermanate crystals, Ukr. J. Phys. Opt. 7 (2006) 183-188. open in new tab
  18. Y. Shopa, L. Lutsiv-Shumskiy, R. Serkiz, Optical activity of the KDP group crystals, Ferroelectrics 317 (2005) 79-82. open in new tab
  19. Y. Shopa, N. Ftomyn, Optical activity of Ca3Ga2Ge4O14 crystals: experiment and calculus, Opt. Appl. 43 (2013) 217-228. open in new tab
  20. Y. Vasylkiv, O. Kvasnyuk, Y. Shopa, R. Vlokh, Optical activity caused by torsion stresses: the case of NaBi(MoO4)2 crystals, J. Opt. Soc. Am. A 30 (2013) 891-897. open in new tab
  21. W. Jung, G. Water, Op Amp Applications Handbook, Elsevier, 2005. open in new tab
  22. K. Peter, M. Wahl, R. Erdmann, Advanced Photon Counting: Applications, Methods, Instrumentation, Springer, 2015. open in new tab
  23. B. Wolfgang, Advanced Time-correlated Single Photon Counting Techniques, 81, Springer Science Business Media, 2005. open in new tab
  24. A. Yariv, P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation, Wiley, 2002.
  25. Y. Takubo, N. Takeda, J.H. Huang, K. Muroo, M. Yamamoto, Precise measurement of the extinction ratio of a polarization analyser, Meas. Sci. Technol. 9 (1998) 20-23. open in new tab
  26. Y. Shopa, N. Ftomyn, I. Sokoliuk, Crystal structure and optical activity of La3Ga5SiO14 crystals, Ukr. J. Phys. Opt. 15 (2014) 155-161. open in new tab
  27. H.-H. Mei, S.-J. Chen, W.-T. Ni, Suspension of the fiber mode-cleaner launcher and measurement of the high extinction-ratio (10 −9 ) ellipsometer for the Q & A experiment, JOP: Conference Series 32 (2011) 236-243. open in new tab
  28. J. Nye, Physical Properties of Crystals, Oxford University Press, Oxford, 1985.
  29. W. Kaminsky, E. Haussüll, L. Bastin, J. Subramony, B. Kahr, Correlation of KH2PO4 hillock chirality with absolute structure, J. Crystal Growth 234 (2002) 523-528. open in new tab
  30. A.F. Konstantinova, A.E. Evdishchenko, K.B. Imangazieva, Manifestation of optical activity in crystals of different symmetry classes, Crystallogr. Rep. 51 (2006) 998-1008. open in new tab
  31. O. Vlokh, A. Krochuk, L. Lutsiv-Shumskiy, E. Smishko, Refraction indices and electrooptical coefficient r41 of K(DxH1−x)2PO4 crystals, Izv. AN SSSR 39 (1975) 983-986 (in Russian).
  32. M. Takada, N. Hosogaya, T. Someya, J. Kobayashi, Optical activity of KH2PO4, Ferroelectrics 96 (1989) 295-300. open in new tab
Verified by:
Gdańsk University of Technology

seen 117 times

Recommended for you

Meta Tags