Effects of Salvia officinalis and Thymus vulgaris on oxidant-induced DNA damage and antioxidant status in HepG2 cells - Publication - Bridge of Knowledge

Search

Effects of Salvia officinalis and Thymus vulgaris on oxidant-induced DNA damage and antioxidant status in HepG2 cells

Abstract

Salvia officinalis (SO) and Thymus vulgaris (TV) are medicinal plants well known for their curative powers. However, the molecular mechanisms responsible for these abilities of sage and thyme have not been fully understood yet. In this study we investigated the composition and the quantitative estimation of plant extracts, the protective effects of plant extracts against hydrogen peroxide- and 2,3-dimethoxy-1,4 naphthoquinone-induced DNA damage, and levels of enzymatic and non-enzymatic antioxidants (superoxide dismutase, glutathione peroxidase, glutathione) in human HepG2 cells. To measure antioxidative activity of plant extracts we used three assays: 1,1 diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and 2,20-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The results showed that the oxidant-induced DNA lesions were significantly reduced in cells pre-treated with the plant extracts studied. The observed DNA-protective activity could be explained by both elevation of GPx activity in cells pre-treated with SO and TV and antioxidant activity of SO and TV.

Citations

  • 6 9

    CrossRef

  • 0

    Web of Science

  • 8 5

    Scopus

Authors (8)

Cite as

Full text

download paper
downloaded 272 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
FOOD CHEMISTRY no. 141, edition 3, pages 2198 - 2206,
ISSN: 0308-8146
Language:
English
Publication year:
2013
Bibliographic description:
Kozicsa K., Klusová V., Srancikowa A., Mučaji P., Slamenova D., Hunáková Ľ., Kusznierewicz B., Horváthová E.: Effects of Salvia officinalis and Thymus vulgaris on oxidant-induced DNA damage and antioxidant status in HepG2 cells// FOOD CHEMISTRY. -Vol. 141, iss. 3 (2013), s.2198-2206
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.foodchem.2013.04.089
Bibliography: test
  1. Aherne, S. A., Kerry, J. P., & O'Brien, N. M. (2007). Effects of plant extracts on antioxidant status and oxidant-induced stress in Caco-2 cells. British Journal of Nutrition, 97, 321-328. open in new tab
  2. Alho, H., & Leinonen, J. (1999). Total antioxidant activity measured by chemiluminescence methods. Methods in Enzymology, 299, 3-14. open in new tab
  3. Amin, A., & Hamza, A. A. (2005). Hepatoprotective effects of Hibiscus, Rosmarinus and Salvia on azathioprine-induced toxicity in rats. Life Sciences, 77, 266-278. open in new tab
  4. Aydin, S., Bas ßaran, A. A., & Bas ßaran, N. (2005). The effects of thyme volatiles on the induction of DNA damage by the heterocyclic amine IQ and mitomycin C. Mutation Research, 581, 43-53. open in new tab
  5. Barbouti, A., Doulias, P. T., Nousis, L., Tenopoulou, M., & Galaris, D. (2002). DNA damage and apoptosis in hydrogen peroxide-exposed Jurkat cells: Bolus addition versus continuous generation of H 2 O 2 . Free Radical Biology and Medicine, 33, 691-702. open in new tab
  6. Baricevic, D., & Bartol, T. (2000). The biological/pharmacological activity of the Salvia genus. In S. E. Kintzios (Ed.), Sage: The genus Salvia (pp. 143-184). Amsterdam: Harwood Academic Publishers. open in new tab
  7. Collins, A. R., Duthie, S. J., & Dobson, V. L. (1993). Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis, 14, 1733-1735. open in new tab
  8. Dorman, H. J., Peltoketo, A., Hiltunen, R., & Tikkanen, M. J. (2003). Characterisation of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs. Food Chemistry, 83, 255-262. open in new tab
  9. Eidi, M., Eidi, A., & Bahar, M. (2006). Effects of Salvia officinalis L. (sage) leaves on memory retention and its interaction with the cholinergic system in rats. Nutrition, 22, 321-326. open in new tab
  10. Gant, T. W., Rao, D. N., Mason, R. P., & Cohen, G. M. (1988). Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes. Chemico-Biological Interactions, 65, 157-173. open in new tab
  11. Hajimehdipoor, H., Shekarchi, M., Khanavi, M., Adib, N., & Amri, M. (2010). A validated high performance liquid chromatography method for the analysis of thymol and carvacrol in Thymus vulgaris L. volatile oil. Pharmacognosy Magazine, 6, 154-158.
  12. Halliwell, B., & Gutteridge, J. M. C. (1999). Free radicals in biology and medicine (3rd ed.). New York: Oxford University Press. open in new tab
  13. Hamrouni-Sellami, I., Rahali, F. Z., Rebey, I. B., Bourgou, S., Limam, F., & Marzouk, B. (2013). Total phenolics, flavonoids, and antioxidant activity of sage (Salvia officinalis L.) plants as affected by different drying methods. Food and Bioprocess Technology, 6, 806-817. open in new tab
  14. Kontogianni, V. G., Tomic, G., Nikolic, I., Neratzaki, A. A., Sayyad, N., Stosic-Grujicic, S., et al. (2013). Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chemistry, 136, 120-129. open in new tab
  15. Kukic, J., Popovic, V., Petrovic, S., Mucaji, P., Ciric, A., Stojkovic, D., et al. (2008). Antioxidant and antimicrobial activity of Cynara cardunculus extracts. Food Chemistry, 107, 861-868. open in new tab
  16. Kuresh, A., Youdim, K. A., & Stanley, G. (1999). Dietary supplementation of thyme (Thymus vulgaris L.) essential oil during the lifetime of the rat: Its effects on the antioxidant status in liver, kidney and heart tissues. Deans Mechanisms of Ageing and Development, 109, 163-175.
  17. Kusznierewicz, B., Piasek, A., Bartoszek, A., & Namiesnik, J. (2011). The optimisation of analytical parameters for routine profiling of antioxidants in complex mixtures by HPLC coupled post-column derivatisation. Phytochemical Analysis, 22, 392-402. open in new tab
  18. Lamaison, J. L., Petitjean-Freytet, C., & Carnat, A. (1991). Lamiacées médicinales à propriétés antioxydantes, sources potentielles dàcide rosmarinique. Pharmaceutica Acta Helvetiae, 66, 185-188.
  19. Lima, C. F., Andrade, P. B., Seabra, R. M., Fernandes-Ferreira, M., & Pereira-Wilson, C. (2005). The drinking of a Salvia officinalis infusion improves liver antioxidant status in mice and rats. Journal of Ethnopharmacology, 97, 383-389. open in new tab
  20. Lima, C. F., Valentao, P. C., Andrade, P. B., Seabra, R. M., Fernandes-Ferreira, M., & Pereira-Wilson, C. (2007). Water and methanolic extracts of Salvia officinalis protect HepG2 cells from t-BHP induced oxidative damage. Chemico-Biological Interactions, 167, 107-115. open in new tab
  21. Melidou, M., Riganakos, K., & Galaris, D. (2005). Protection against nuclear DNA damage offered by flavonoids in cells exposed to hydrogen peroxide: The role of iron chelation. Free Radical Biology and Medicine, 39, 1591-1600. open in new tab
  22. Oyewole, O. I., Owoseni, A. A., & Faboro, E. O. (2010). Studies on medicinal and toxicological properties of Cajanus cajan, Ricinus communis and Thymus vulgaris leaf extracts. Journal of Medical Plants Research, 4, 2004-2008.
  23. Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine, 70, 158-169.
  24. Shan, B., Cai, Y. Z., Sun, M., & Corke, H. (2005). Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. Journal of Agricultural and Food Chemistry, 53, 7749-7759. open in new tab
  25. Singh, N. P., McCoy, M. T., Tice, R. R., & Schneider, E. L. (1988). A simple technique for quantification of low levels of DNA damage in individual cells. Experimental Cell Research, 175, 184-191. open in new tab
  26. Slameň ová, D., Gábelová, A., Ružeková, Ľ., Chalupa, I., Horváthová, E., Farkašová, T., et al. (1997). Detection of MNNG-induced DNA lesions in mammalian cells; validation of comet assay against DNA unwinding technique, alkaline elution of DNA and chromosomal aberrations. Mutation Research, 383, 243-252. open in new tab
  27. Slameň ová, D., Horváthová, E., Šramková, M., & Lábaj, J. (2007). Toxic genotoxic and DNA-protective effects of selected plant volatiles on human cells cultured in vitro. In Z. Ď uračková & S. Knasmüller (Eds.), The activity of natural compounds in diseases prevention and therapy (pp. 149-170). Mind & Health Civil Association, Slovak Academic Press Ltd.. open in new tab
  28. Tagashira, M., & Ohtake, Y. (1998). A new antioxidative 1,3-benzodioxole from Melissa officinalis. Planta Medica, 64, 555-558. open in new tab
  29. Tapper, M. A., Sheedy, B. R., Hammermeister, D. E., & Schmieder, P. K. (2000). Depletion of cellular protein thiols as an indicator of arylation in isolated trout hepatocytes exposed to 1,4-benzoquinone. Journal of Toxicological Scienes, 55, 327-334. open in new tab
  30. Tsai, M. L., Lin, C. C., Lin, W. C., & Yang, C. H. (2011). Antimicrobial, antioxidant, and anti-inflammatory activities of essential oils from five selected herbs. Bioscience, Biotechnology and Biochemistry, 7510, 1977-1983. open in new tab
  31. Youdim, K. A., & Deans, S. G. (1999). Dietary supplementation of thyme (Thymus vulgaris L.) essential oil during the lifetime of the rat: Its effects on the antioxidant status in liver, kidney and heart tissues. Mechanisms of Ageing and Development, 109, 163-175. open in new tab
  32. Zheng, W., & Wang, S. Y. (2001). Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food Chemistry, 49, 5165-5170. open in new tab
Verified by:
Gdańsk University of Technology

seen 143 times

Recommended for you

Meta Tags