Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations - Publication - Bridge of Knowledge

Search

Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations

Abstract

The technique of the orthogonal projection of ionosphere electronic content variations for mapping total electron content (TEC) allows us to visualize ionospheric irregularities. For the reconstruction of global ionospheric characteristics, numerous global navigation satellite system (GNSS) receivers located in different regions of the Earth are used as sensors. We used dense GNSS networks in central Europe to detect and investigate a special type of plasma inhomogeneities, called travelling ionospheric disturbances (TID). Such use of GNSS sensors allows us to reconstruct the main TID parameters, such as spatial dimensions, velocities, and directions of their movement. The paper gives examples of the restoration of dynamic characteristics of ionospheric irregularities for quiet and disturbed geophysical conditions. Special attention is paid to the dynamics of ionospheric disturbances stimulated by the magnetic storms of two St. Patrick’s Days (17 March 2013 and 2015). Additional opportunities for the remote sensing of the ionosphere with the use of dense regional networks of GNSS receiving sensors have been noted too.

Citations

  • 3 4

    CrossRef

  • 0

    Web of Science

  • 3 3

    Scopus

Authors (4)

Cite as

Full text

download paper
downloaded 31 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
SENSORS no. 17, edition 10, pages 1 - 14,
ISSN: 1424-8220
Language:
English
Publication year:
2017
Bibliographic description:
Nykiel G., Zanimonskiy Y., Yampolski Y., Figurski M.: Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations// SENSORS-BASEL. -Vol. 17, iss. 10 (2017), s.1-14
DOI:
Digital Object Identifier (open in new tab) 10.3390/s17102298
Bibliography: test
  1. Hernández-Pajares, M.; Juan, J.M.; Sanz, J.; Orus, R.; Garcia-Rigo, A.; Feltens, J.; Komjathy, A.; Schaer, S.C.; Krankowski, A. The IGS VTEC maps: A reliable source of ionospheric information since 1998. J. Geodesy 2009, 83, 263-275. [CrossRef] open in new tab
  2. Krypiak-Gregorczyk, A.; Wielgosz, P.; Gosciewski, D.; Paziewski, J. Validation of approximation techniques for local TEC mapping. Acta Geodyn. Geomater. 2013, 10, 275-283. [CrossRef] open in new tab
  3. Yadav, S.; Sunda, S.; Sridharan, R. The impact of the 17 March 2015 St. Patrick's Day storm on the evolutionary pattern of equatorial ionization anomaly over the Indian longitudes using high-resolution spatiotemporal TEC maps: New insights. Space Weather 2016, 14. [CrossRef] open in new tab
  4. Figueiredo, C.A.O.B.; Wrasse, C.M.; Takahashi, H.; Otsuka, Y.; Shiokawa, K.; Barros, D. Large-scale traveling ionospheric disturbances observed by GPS DTEC maps over North and South America on Saint Patrick's day storm in 2015. J. Geophys. Res. Space Phys. 2017, 122. [CrossRef] open in new tab
  5. Schaer, S. Mapping and Predicting the Earth's Ionosphere Using the Global Positioning System. Ph.D. Thesis, University Bern, Bern, Switzerland, 1999.
  6. Bergeot, N.; Chevalier, J.-M.; Bruyninx, C.; Pottiaux, E.; Aerts, W.; Baire, Q.; Legrand, J.; Defraigne, P.; Huanget, W. Near real-time ionospheric monitoring over Europe at the Royal Observatory of Belgium using GNSS data. J. Space Weather Space Clim. 2014, 4, A31. [CrossRef] open in new tab
  7. Huang, L.; Zhang, H.; Xu, P.; Geng, J.; Wang, C.; Liu, J. Kriging with Unknown Variance Components for Regional Ionospheric Reconstruction. Sensors 2017, 17, 468. [CrossRef] [PubMed] open in new tab
  8. Crowley, G.; Azeem, I.; Reynolds, A.; Duly, T.M.; McBride, P.; Winkler, C.; Hunton, D. Analysis of traveling ionospheric disturbances (TIDs) in GPS TEC launched by the 2011 Tohoku earthquake. Radio Sci. 2016, 51, 507-514. [CrossRef] open in new tab
  9. Otsuka, Y.; Suzuki, K.; Nakagawa, S.; Nishioka, M.; Shiokawa, K.; Tsugawa, T. GPS observations of medium-scale traveling ionospheric disturbances over Europe. Ann. Geophys. 2013, 31, 163-172. [CrossRef] open in new tab
  10. Nishioka, M.; Tsugawa, T.; Kubota, M.; Ishii, M. Concentric waves and short-period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado. Geophys. Res. Lett. 2013, 40, 5581-5586. [CrossRef] open in new tab
  11. Yampolski, Y.M.; Zalizovsky, A.V.; Lytvynenko, L.M.; Lizunov, G.V.; Groves, K.; Moldwin, M. Magnetic Field Variations in Antarctica and the Conjugate Region (New England) Stimulated by Cyclone Activity. Radio Phys. Radio Astron. 2004, 9, 130-151. (In Russian)
  12. Hunsucker, R.D. Atmospheric gravity waves generated in the high-latitude ionosphere: A review. Rev. Geophys. 1982, 20, 293-315. [CrossRef] open in new tab
  13. Hocke, K.; Schlegel, K. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982-1995. Ann. Geophys. 1996, 14, 917-940. open in new tab
  14. Sopin, A.A.; Zanimonskiy, Y.M.; Lisachenko, V.N.; Yampolski, Y.M. Background variations in the total electron content of the ionosphere over the Antarctic peninsula. Radio Phys. Radio Astron. 2012, 3, 233-240. [CrossRef] open in new tab
  15. Afraimovich, E.L.; Edemskiy, I.K.; Voeykov, S.V.; Yasukevich, Y.V.; Zhivetiev, I.V. Spatio-temporal structure of the wave packets generated by the solar terminator. Adv. Space Res. 2009, 44, 824-835. [CrossRef] open in new tab
  16. Stoll, C.; Schluter, S.; Heise, S.; Jocobi, C.; Jakowski, N.; Raabe, A. A GPS based three-dimensional ionospheric imaging tool: Process and assessment. Adv. Space Res. 2006, 38, 2313-2317. [CrossRef] open in new tab
  17. Zanimonskiy, Y.M.; Nykiel, G.; Paznukhov, A.V.; Figurski, M. Modeling of TEC Variations Based on Signals from Near Zenith GNSS Satellite Observed by Dense Regional Network. In Proceedings of the 2016 International Technical Meeting of The Institute of Navigation, Monterey, CA, USA, 25-28 January 2016; open in new tab
  18. Smith, D.A.; Araujo-Pradere, E.A.; Minter, C.; Fuller-Rowell, T. A comprehensive evaluation of the errors inherent in the use of a two-dimensional shell for modeling the ionosphere. Radio Sci. 2008, 43. [CrossRef] open in new tab
  19. Wielgosz, P.; Kashani, I.; Grejner-Brzezinska, D.; Zanimonskiy, Y.; Cisak, J. Regional Ionosphere Modeling Using Smoothed Pseudoranges. Presented at the 5th International Antarctic Geodesy Symposium (AGS '03), Lviv, Ukraine, 15-17 September 2003; SCAR Report No. 23. Cambridge, UK, April 2005; pp. 37-41. open in new tab
  20. Zanimonskiy, Y.M.; Nykiel, G.; Figurski, M.; Yampolski, Y.M. Modeling of the travelling ionospheric disturbances. Case study of ASG-EUPOS network. In Proceedings of the EGU General Assembly 2016, Vienna, Austria, 17-22 April 2016;
  21. Geophysical Research Abstracts. 2016; Volume 18, pp. 2016-17484. open in new tab
  22. Duda, R.O.; Hart, P.E. Pattern Classification and Scene Analysis;
  23. Longley, P.; Goodchild, M.; Maguire, D.; Rhind, D. Geographic Information Systems and Science, 2nd ed.; John Wiley & Sons, Ltd.: New York, NY, USA, 2005.
  24. Nykiel, G.; Figurski, M.; Koloskov, A.V.; Olijnyk, A.Y.; Zanimonskiy, Y.M. Measurements of TID's parameters based on dense national GNSS networks in Central Europe. In Proceedings of the EUREF-2016 Symposium, San Sebastian, Spain, 25-27 May 2016. open in new tab
  25. National Oceanic and Atmospheric Administration ftp Server. Available online: ftp://ftp.ngdc.noaa.gov/ STP/GEOMAGNETIC_DATA/INDICES/KP_AP/ (accessed on 29 August 2017). open in new tab
  26. Rodríguez-Bouza, M.; Herraiz, M.; Rodriguez-Caderot, G.; Paparini, C.; Otero, X.; Radicella, S.M. Comparison between the effect of two geomagnetic storms with the same seasonal and daily characteristics and different intensity on the European ionosphere. In Proceedings of the EGU General Assembly 2016, Vienna, Austria, 17-22 April 2016; p. 12574. open in new tab
  27. Andrienko, G.; Andrienko, N.; Demsar, U.; Dransch, D.; Dykes, J.; Fabrikant, S.I.; Jern, M.; Kraak, M.J.; Schumann, H.; Tominski, C. Space, time and visual analytics. IJGIS 2010, 24, 1577-1600. [CrossRef] open in new tab
  28. Duly, T.M.; Huba, J.D.; Makela, J.J. Self-consistent generation of MSTIDs within the SAMI3 numerical model. J. Geophys. Res. Space Phys. 2014, 119, 6745-6757. [CrossRef] open in new tab
  29. Cherniak, I.; Zakharenkova, I.; Redmon, R.J. Dynamics of the high-latitude ionospheric irregularities during the 17 March 2015 St. Patrick's Day storm: Ground-based GPS measurements. Space Weather 2015, 13, 585-597. [CrossRef] open in new tab
  30. Drob, D.P.; Emmert, J.T.; Meriwether, J.W.; Makela, J.J.; Doornbos, E.; Conde, M.; Hernandez, G.; Noto, J.; Zawdie, K.A.; McDonald, S.E.; et al. An update to the Horizontal Wind Model (HWM): The quiet time thermosphere. Earth Space Sci. 2015, 2, 301-319. [CrossRef] open in new tab
  31. Liu, J.; Wang, W.; Burns, A.; Yue, X.; Zhang, S.; Zhang, Y.; Huang, C. Profiles of ionospheric storm-enhanced density during the 17 March 2015 great storm. J. Geophys. Res. Space Phys. 2016, 121, 727-744. [CrossRef] open in new tab
Verified by:
Gdańsk University of Technology

seen 186 times

Recommended for you

Meta Tags