Abstract
3D-structured diatom biosilica mixed with conducting carbon black was investigated as an active electrode material for lithium-ion batteries. Diatom biosilica was obtained by cultivation of the selected diatom species under laboratory conditions. Several instrumental techniques (XRD, FTIR, Raman, SEM-EDX, TGA) were used to characterize the physicochemical properties of applied biosilica. It was evidenced that the prepared new composite material has a significant impact on the electrochemical properties of the electrode. The ratio 1:1 of biosilica and carbon black exhibited a specific capacity of 400 ± 9 mAh/g over 90 cycles. Such a ratio ensured proper electric contact between biosilica particles. The specificity of the faradaic process suggests that biosilica-based electrodes might be suitable in large-scale energy storage applications.
Citations
-
3 6
CrossRef
-
0
Web of Science
-
3 4
Scopus
Authors (4)
Cite as
Full text
- Publication version
- Accepted or Published Version
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Algal Research-Biomass Biofuels and Bioproducts
no. 41,
pages 1 - 6,
ISSN: 2211-9264 - Language:
- English
- Publication year:
- 2019
- Bibliographic description:
- Nowak A., Sprynskyy M., Brzozowska W., Lisowska-Oleksiak A.: Electrochemical behavior of a composite material containing 3D-structured diatom biosilica// Algal Research-Biomass Biofuels and Bioproducts -Vol. 41, (2019), s.1-6
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.algal.2019.101538
- Verified by:
- Gdańsk University of Technology
seen 156 times
Recommended for you
Diatoms Biomass as a Joint Source of Biosilica and Carbon for Lithium-Ion Battery Anodes
- A. Nowak,
- M. Sprynskyy,
- I. Wojtczak
- + 5 authors