EXAMINATION OF SOL-GEL DERIVED HYDROXYAPATITE ENHANCED WITH SILVER NANOPARTICLES USING OCT AND RAMAN SPECTROSCOPY - Publication - Bridge of Knowledge

Search

EXAMINATION OF SOL-GEL DERIVED HYDROXYAPATITE ENHANCED WITH SILVER NANOPARTICLES USING OCT AND RAMAN SPECTROSCOPY

Abstract

Hydroxyapatite (HAp) has been attracting widespread interest in medical applications. In a form of coating, it enables to create a durable bond between an implant and surrounding bone tissues. With addition of silver nanoparticles HAp should also provide antibacterial activity. The aim of this research was to evaluate the composition of hydroxyapatite with silver nanoparticles in a non-destructive and non-contact way. For control measurements of HAp molecular composition and solvent evaporation efficiency the Raman spectroscopy has been chosen. In order to evaluate dispersion and concentration of the silver nanoparticles inside the hydroxyapatite matrix, the optical coherence tomography (OCT) has been used. Five samples were developed and examined ‒ a reference sample of pure HAp sol and four samples of HAp colloids with different silver nanoparticle solution volume ratios. The Raman spectra for each solution have been obtained and analyzed. Furthermore, a transversesectional visualization of every sample has been created and examined by means of OCT.

Citations

  • 2

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Cite as

Full text

download paper
downloaded 46 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Metrology and Measurement Systems no. 24, pages 153 - 160,
ISSN: 0860-8229
Language:
English
Publication year:
2017
Bibliographic description:
Głowacki M., Gnyba M., Strąkowska P., Gardas M., Kraszewski M., Trojanowski M., Strąkowski M.: EXAMINATION OF SOL-GEL DERIVED HYDROXYAPATITE ENHANCED WITH SILVER NANOPARTICLES USING OCT AND RAMAN SPECTROSCOPY// Metrology and Measurement Systems. -Vol. 24, iss. 1 (2017), s.153-160
DOI:
Digital Object Identifier (open in new tab) 10.1515/mms-2017-0008
Bibliography: test
  1. Leventouri, Th. (2006). Synthetic and biological hydroxyapatites: Crystal structure questions. Biomaterials, 27, 3339−3342. open in new tab
  2. Sadat-Shojai, M., Khorasani, M.T., Dinpanah-Khoshdargi, E., Jamshidi, A. (2013). Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomaterialia, 9, 7591−7621. open in new tab
  3. Eilberg, R.G., Zuckerberg, D.A. (1975). Mineralization of Invertebrate Cartilage. Calcif. Tiss. Res., 19, 85−90. open in new tab
  4. Orlovskii, V.P., Komlev, V.S., Barinov, S.M. (2002). Hydroxyapatite and Hydroxyapatite-Based Ceramics. Inorganic Materials, 38(10), 973-984. open in new tab
  5. Afshar, A., Ghorbani, M., Ehsani, N., Saeri, M.R., Sorrell, C.C. (2003). Some important factors in the wet precipitation process of hydroxyapatite. Materials and Design, 24, 197−202. open in new tab
  6. Mobasherpour, I., Soulati Heshajin, M., Kazemzadeh, A., Zakeri, M. (2007). Synthesis of nanocrystalline hydroxyapatite by using precipitation method. Journal of Alloys and Compounds, 430, 330−333. open in new tab
  7. Bogdanoviciene, I., Beganskiene, A., Tonsuaadu, K., Glaser, J., Meyer, H.J., Kareiva, A. (2006). Calcium hydroxyapatite, Ca10(PO4)6(OH)2 ceramics prepared by aqueous sol-gel processing. Materials Research Bulletin, 41, 1754−1762. open in new tab
  8. Pramanik, S., Agarwal, A.K., Rai, K.N., Garg, A. (2007). Development of high strength hydroxyapatite by solid-state-sintering process. Ceramics International, 33, 419−426. open in new tab
  9. Wang, Y., Zhang , S., Wei, K., Zhao, N., Chen, J., Wang, X. (2006). Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template. Materials Letters, 60, 1484−1487. Brought to you by | Gdansk University of Technology Authenticated Download Date | 12/20/17 10:13 AM open in new tab
  10. Teshima, K., Lee, S., Sakurai, M., Kameno, Y., Yubuta, K., Suzuki, T., Shishido, T., Endo, M., Oishi, S. (2009). Well-Formed One-Dimensional Hydroxyapatite Crystals Grown by an Environmentally Friendly Flux Method. Crystals Growth & Design, 9(6), 2937−2940. open in new tab
  11. Mohseni, E., Zalnezhad, E., Bushroa, A.R. (2014). Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implant: A review paper. International Journal of Adhesion & Adhesives, 48, 238−257. open in new tab
  12. Brinker, C.J., Scherer, G.W. (1990). Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. USA: Academic Press. open in new tab
  13. Uklejewski, R., Winiecki, M., Mielniczuk, J., Rogala, P., Auguściński, A. (2008). The poroaccessibility parameters for three-dimensional characterization of orthopedic implants porous coatings. Metrol. Meas. Syst., 15(2), 215−226. open in new tab
  14. Batory, D., Gawronski, J., Kaczorowski, W., Niedzielska, A. (2012). C-HAp composite layers deposited onto AISI 316L austenitic steel. Surface & Coatings Technology, 206, 2110−2114. open in new tab
  15. Andrade, F.A.C., de Oliveira Vercik, L.C., Monteiro, F.J., da Silva Rigo, E.C. (2016). Preparation, characterization and antibacterial properties of silver nanoparticles-hydroxyapatite composites by a simple and eco-friendly method. Ceramics International, 42, 2271−2280. open in new tab
  16. Tian, B., Chen, W., Yu, D., Lei, Y., Ke, Q., Guo, Y., Zhu, Z. (2016). Fabrication of silver nanoparticle-doped hydroxyapatite coatings with oriented block arrays for enhancing bactericidal effect and osteoinductivity. Journal of the mechanical behavior of biomedical materials, 61, 345−359. open in new tab
  17. Fercher, A.F., Drexler, W., Hitzenberger, C.K., Lasser, T. (2003). Optical coherence tomography -principles and applications. Reports on Progress in Physics, 66, 239−303. open in new tab
  18. Strąkowski, M.R., Pluciński, J., Jędrzejewska-Szczerska, M., Hypszer, R., Maciejewski, M., Kosmowski, B.B. (2008). Polarization sensitive optical coherence tomography for technical materials investigation. Sensors and Actuators A, 142, 104−110. open in new tab
  19. Trojanowski, M., Kraszewski, M., Strąkowski, M.R., Pluciński, J. (2015). Optical Coherence Tomography for nanoparticles quantitative characterization. Proc. SPIE 9554, Nanoimaging and Nanospectroscopy III, 95540I. open in new tab
  20. Strąkowski, M.R., Pluciński, J., Kosmowski, B.B. (2011). Polarization Sensitive Optical Coherence Tomography with Spectroscopic Analysis. Acta Physica Polonica A, 120(4), 785−788. open in new tab
  21. Pircher, M., Hitzenberger, C.K., Schmidt-Erfurth, U. (2011). Polarization sensitive optical coherence tomography in the human eye. Progress in Retinal and Eye Research, 30, 431−451. open in new tab
  22. Kwiatkowski, A., Gnyba, M., Smulko, J., Wierzba, P. (2010). Algorithms of chemicals detection using Raman spectra. Metrol. Meas. Syst., 17(4), 549−560. open in new tab
  23. Ferraro, J.R., Nakamoto, K., Brown, C.W. (2003). Introductory Raman Spectroscopy. Elsevier. open in new tab
  24. Kim, I., Kumta, P.N. (2004). Sol-gel synthesis and characterization of nanostructured hydroxyapatite powder. Materials Science and Engineering B, 111, 232−236. open in new tab
  25. Zielinska, A., Skwarek, E., Zaleska, A., Gazda, M., Hupka, J. (2009). Preparation of silver nanoparticles with controlled particle size. Procedia Chemistry, 1, 1560−1566. open in new tab
  26. Niemelä, P., Suhonen, J. (2001). Rugged Fiber-Optic Raman Probe for Process Monitoring Applications. Applied Spectroscopy, 55(10), 1337−1340. open in new tab
  27. Gnyba, M., Keränen, M., Maaninen, A., Suhonen, J., Jędrzejewska-Szczerska, M., Kosmowski, B.B., Wierzba, P. (2005). Raman system for on-line monitoring and optimization of hybrid polymer gelation. Opto-Electronics Review, 13(1), 9−17. open in new tab
  28. Gnyba, M., Keraenen, M. (2003). Optical investigation of molecular structure of sophisticated materials for photonics. Proc. SPIE, 5125, 339-344. open in new tab
  29. Koutsopoulos, S. (2002). Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. Journal of Biomedical Materials Research, 62(4), 600−612. Brought to you by | Gdansk University of Technology Authenticated Download Date | 12/20/17 10:13 AM open in new tab
Verified by:
Gdańsk University of Technology

seen 110 times

Recommended for you

Meta Tags