Expedited simulation-driven design optimization of UWB antennas by means of response features - Publication - MOST Wiedzy

Search

Expedited simulation-driven design optimization of UWB antennas by means of response features

Abstract

In this work, a method for fast design optimization of broadband antennas is considered. The approach is based on a feature-based optimization (FBO) concept where reflection characteristics of the structure at hand are formulated in terms of suitably defined feature points. Redefinition of the design problem allows for reducing the design optimization cost, because the dependence of feature point coordinates on antenna dimensions is less nonlinear than for the original frequency characteristics (here, S-parameters). This results in faster convergence of the optimization algorithm. The cost of the design process is further reduced using variable-fidelity electromagnetic (EM) simulation models. In case of UWB antennas, the feature points are defined, among others, as the levels of the reflection characteristic at its local in-band maxima, as well as location of the frequency point which corresponds to acceptable reflection around the lower corner frequency within the UWB band. Also, the number of characteristic points depends on antenna topology and its dimensions. Performance of FBO-based design optimization is demonstrated using two examples of planar UWB antennas. Moreover, the computational cost of the approach is compared to conventional optimization driven by a pattern search algorithm. Experimental validation of the numerical results is also provided.

Citations

  • 1 0

    CrossRef

  • 4

    Web of Science

  • 1 6

    Scopus

Full text

download paper
downloaded 0 times

License

Copyright (2017 Wiley Periodicals, Inc.)

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING no. 27, pages 1 - 8,
ISSN: 1096-4290
Language:
English
Publication year:
2017
Bibliographic description:
Kozieł S., Bekasiewicz A.: Expedited simulation-driven design optimization of UWB antennas by means of response features// INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING -Vol. 27,iss. 6 (2017), s.1-8
DOI:
Digital Object Identifier (open in new tab) 10.1002/mmce.21102
Bibliography: test
  1. A. Bekasiewicz, and S. Koziel, -Structure and computationally-efficient simulation-driven design of compact UWB monopole antenna,‖ IEEE Ant. Wireless Prop. Lett., vol. 14, pp. 1282-1285, 2015. open in new tab
  2. S. Koziel, S. Ogurtsow, W. Zieniutycz, and A. Bekasiewicz, -Design of a planar UWB dipole antenna with an integrated balun using surrogate-based optimization,‖ IEEE Ant. Wireless Prop. Lett., vol. 14, pp. 366-369, 2015. open in new tab
  3. A.A.Kishk and Y.M.M.Antar, -Dielectric resonator antennas,‖ in Antenna Engineering Handbook, J.L. Volakis, Editor, 4th ed., McGraw-Hill, 2007.
  4. C.C. Lin, S.W. Kuo, and H.R. Chuang, -A 2.4-GHz printed meander-line antenna for USB WLAN with notebook-PC housing,‖ IEEE Microwave Wireless Comp. Lett., vol. 15, no. 9, pp. 546-548, 2005. open in new tab
  5. D. Pinchera and M.D. Migliore, -A Simple and Effective Procedure for Connector Deembedding in Antenna Arrays,‖ IEEE Ant. Wireless Prop. Lett., vol. 8, pp. 534-537, 2009. open in new tab
  6. S. Chamaani, M.S. Abrishamian, S.A. Mirtaheri, -Time-domain design of UWB Vivaldi antenna array using multiobjective particle swarm optimization,‖ IEEE Ant. Wireless Prop. Lett., vol. 9, pp. 666-669, 2010. open in new tab
  7. A. Bekasiewicz and S. Koziel, -Structure and design optimisation of compact UWB slot antenna,‖ Electronics Lett., vol. 52, no. 9, pp. 681-682, 2016. open in new tab
  8. J. Nocedal and S. Wright, Numerical Optimization, 2 nd edition, Springer, New York, 2006. open in new tab
  9. A. Conn, K. Scheinberg, and L.N. Vincente, Introduction to Derivative-Free Optimization, MPS-SIAM Series on Optimization, Philadelphia, 2009. open in new tab
  10. R. L. Haupt, -Antenna design with a mixed integer genetic algorithm,‖ IEEE Trans. Antennas Propag., vol. 55, no. 3, pp. 577-582, Mar. 2007. open in new tab
  11. M. F. Pantoja, P. Meincke, and A. R. Bretones, -A hybrid genetic algorithm space- mapping tool for the optimization of antennas,‖ IEEE Trans. Antennas Propag., vol. 55, no. 3, pp. 777-781, Mar. 2007. open in new tab
  12. N. Jin and Y. Rahmat-Samii, -Parallel particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs,‖ IEEE Trans. Antennas Propag., vol. 53, no. 11, pp. 3459-3468, Nov. 2005. open in new tab
  13. A. Halehdar, D.V. Thiel, A. Lewis, and M. Randall, -Multiobjective optimization of small meander wire dipole antennas in a fixed area using ant colony system,‖ Int. J. RF and Microwave CAE, vol. 19, No. 5, pp. 592-597, 2009. open in new tab
  14. O.M.H. Ahmed, A.R. Sebak, T.A. Denidni, -Compact UWB printed monopole loaded with dielectric resonator antenna,‖ Electronics Lett., vol. 47, no. 1, pp. 7-8, 2011. open in new tab
  15. C.-Y. Huang, J.-Y. Su, -A printed band-notched UWB antenna using quasi-self- complementary structure,‖ IEEE Ant. Wireless Prop. Lett., vol. 10, pp. 1151-1153, 2011
  16. S. Koziel and S. Ogurtsov, -Antenna design by simulation-driven optimization. Surrogate- based approach,‖ Springer, 2014. open in new tab
  17. S. Koziel, X.S. Yang, and Q.J. Zhang (Eds.), -Simulation-driven design optimization and modeling for microwave engineering‖, Imperial College Press, 2013. open in new tab
  18. N.V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R. Vaidynathan, and P.K. Tucker, -Surrogate-based analysis and optimization,‖ Progress in Aerospace Sciences, vol. 41, no. 1, pp. 1-28, Jan. 2005. open in new tab
  19. J.W. Bandler, Q.S. Cheng, S.A. Dakroury, A.S. Mohamed, M.H. Bakr, K. Madsen, and J. Søndergaard, -Space mapping: the state of the art,‖ IEEE Trans. Microwave Theory Tech., vol. 52, no. 1, pp. 337-361, Jan. 2004. open in new tab
  20. S. Koziel, S. Ogurtsov, and S. Szczepanski, -Rapid antenna design optimization using shape-preserving response prediction,‖ Bulletin of the Polish Academy of Sciences. Tech. Sci., vol. 60, pp. 143-149, 2012. open in new tab
  21. S. Koziel, J.W. Bandler, and K. Madsen, ‖Space mapping with adaptive response correction for microwave design optimization,‖ IEEE Trans. Microwave Theory Tech., vol. 57, no. 2, pp. 478-486, 2009. open in new tab
  22. S. Koziel, L. Leifsson, and S. Ogurtsov, -Reliable EM-driven microwave design optimization using manifold mapping and adjoint sensitivity,‖ Microwave Opt. Tech. Lett., vol. 55, pp. 809-813, 2013. open in new tab
  23. S. Koziel and S. Ogurtsov, -Rapid optimization of omnidirectional antennas using adaptively adjusted design specifications and kriging surrogates,‖ IET Microwaves, Ant. Prop., vol. 7, no. 15, pp. 1194-1200, 2013. open in new tab
  24. M.A. El Sabbagh, M.H. Bakr, and J.W. Bandler, -Adjoint higher order sensitivities for fast full-wave optimization of microwave filters,‖ IEEE Trans. Microw Theory Tech., vol. 54, pp. 3339-3351, 2006. open in new tab
  25. S. Koziel, and A. Bekasiewicz, -Fast EM-driven size reduction of antenna structures by means of adjoint sensitivities and trust regions,‖ IEEE Ant. Wireless Prop. Lett., vol. 14, pp. 1681-1684, 2015. open in new tab
  26. M. Ghassemi, M. Bakr and N. Sangary, -Antenna design exploiting adjoint sensitivity- based geometry evolution,‖ IET Microwaves Ant. Prop., vol. 7, no. 4, pp. 268-276, 2013. open in new tab
  27. A. Khalatpour, R.K. Amineh, Q.S. Cheng, M.H. Bakr, N.K. Nikolova, and J.W. Bandler, -Accelerating space mapping optimization with adjoint sensitivities," IEEE Microwave Wireless Comp. Lett., vol. 21, no. 6, pp. 280-282, 2011. open in new tab
  28. S. Koziel, S. Ogurtsov, Q.S. Cheng, and J.W. Bandler, -Rapid electromagnetic-based microwave design optimisation exploiting shape-preserving response prediction and adjoint sensitivities,‖ IET Microwaves, Ant. Prop., vol. 8, no. 10, pp. 775-781, 2014. open in new tab
  29. S. Koziel, and J.W. Bandler, -Rapid Yield Estimation and Optimization of Microwave Structures Exploiting Feature-Based Statistical Analysis,‖ IEEE Trans. Microwave Theory Tech., vol. 63, no. 1, pp. 107-114, 2015. open in new tab
  30. S. Koziel, S. Ogurtsov, -Fast surrogate-assisted simulation-driven optimisation of add-drop resonators for integrated photonic circuits,‖ IET Microwaves, Ant. Prop., vol. 9, no. 7, pp. 672-675, 2015. open in new tab
  31. S. Koziel and A. Bekasiewicz, -Fast design optimization of UWB antennas using response features,‖ Int. Conf. Microwave Radar Wireless Comm., pp. 1-4, Krakow, 2016. open in new tab
  32. O. Glubokov, and S. Koziel, -EM-driven tuning of substrate integrated waveguide filters exploiting feature-space surrogates,‖ Int. Microwave Symp., Tampa Bay, FL, USA, pp. 1-3, 2014. open in new tab
  33. A.R. Conn, N.I.M. Gould, and P.L. Toint, Trust Region Methods, 2000 MPS-SIAM Series on Optimization, 2000. open in new tab
  34. MathWorks MATLAB, v. 2012a, MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760.
  35. X. Qing, Z.N. Chen, -Compact coplanar waveguide-fed ultra-wideband monopole-like slot antenna,‖ IET Microwaves Ant. Prop., vol. 3, no. 5, pp. 889-898, 2009. open in new tab
  36. S. Koziel, and A. Bekasiewicz, -Low-cost multi-objective optimization of antennas using Pareto front exploration and response features,‖ to appear, IEEE Int. Symp. Ant. Prop., Fajardo, 2016. open in new tab
  37. CST Microwave Studio, ver. 2013, CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany, 2013. open in new tab
  38. T.G. Kolda, R.M. Lewis, V. Torczon, -Optimization by direct search: new perspectives on some classical and modern methods,‖ SIAM Review, vol. 45, no. 3, pp. 385-482, 2003. open in new tab
  39. T.W. Hertel, -Cable-current effects of miniature UWB antennas,‖ IEEE Ant. Prop. Society Int. Symp., vol. 3A, pp. 524-527, 2005. open in new tab
  40. C.A. Balanis, Modern antenna handbook, John Wiley & Sons, 2008. open in new tab
Verified by:
Gdańsk University of Technology

seen 3 times

Recommended for you

Meta Tags