Fluctuation enhanced gas sensing with WO3-based nanoparticle gas sensors modulated by UV light at selected wavelengths - Publication - Bridge of Knowledge

Search

Fluctuation enhanced gas sensing with WO3-based nanoparticle gas sensors modulated by UV light at selected wavelengths

Abstract

The sensitivity and selectivity of WO3-based gas sensors can be enhanced by UV-irradiation-induced modulation, especially if different wavelengths are employed. We used fluctuation-enhanced gas sensing, based on measurements of resistance fluctuations in the gas sensor, to study the effects of such modulation on the noise intensity for ambient atmospheres of synthetic air without and with additions of small amounts of ethanol, methane and formaldehyde. Our data confirmed that the method is energy efficient and can be applied to improve gas detection sensitivity and selectivity. The results are strongly dependent on the gaseous species, and a single UV-modulated WO3-based gas sensor discriminate between different gases.

Citations

  • 4 8

    CrossRef

  • 0

    Web of Science

  • 5 1

    Scopus

Authors (6)

Cite as

Full text

download paper
downloaded 87 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
SENSORS AND ACTUATORS B-CHEMICAL no. 234, pages 453 - 461,
ISSN: 0925-4005
Publication year:
2016
Bibliographic description:
Trawka M., Smulko J., Hasse L., Granqvist C., Annanouch F., Ionescu R.: Fluctuation enhanced gas sensing with WO3-based nanoparticle gas sensors modulated by UV light at selected wavelengths// SENSORS AND ACTUATORS B-CHEMICAL. -Vol. 234, (2016), s.453-461
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.snb.2016.05.032
Bibliography: test
  1. G. Korotcenkov, Gas response control through structural and chemical modifications of metal oxide films: State of the art and approaches, Sens. Actuators B 107 (2005) 209- 232. open in new tab
  2. J. Smulko, J. Ederth, L. Yingfeng, L.B. Kish, M. Kennedy, F. Krus, Gas-sensing by thermoelectric voltage fluctuations in SnO2 nanoparticle films, Sens. Actuators B 106 (2005) 708-712. open in new tab
  3. P. Heszler, R. Ionescu, E. Llobet, L. F. Reyes, J. Smulko, L.B. Kish, C.G. Granqvist, On the selectivity of nanostructured semiconductor gas sensors, Phys. Status Solidi B 244 (2007) 4331-4335. open in new tab
  4. L.B. Kish, H. Chang, M.D. King, C. Kwan, J.O. Jensen, G. Schmera, J. Smulko, Z. Gingl, C.G Granqvist, Fluctuation-enhanced sensing for biological agent detection and identification, IEEE Trans. Nanotechnol. 10 (2011) 1238-1242. open in new tab
  5. B. Ayhan, C. Kwan, J. Zhou, L.B. Kish, K.D. Benkstein, P.H. Rogers, S. Semancik, Fluctuation enhanced sensing (FES) with a nanostructured, semiconducting metal oxide film for gas detection and classification, Sens. Actuators B 188 (2013) 651-660. open in new tab
  6. J. Ederth, J. Smulko, L. Kish, P. Heszler, C.G. Granqvist, Comparison of classical and fluctuation-enhanced gas sensing with PdxWO3 nanoparticle films, Sens. Actuators B 113 (2005) 310-315. open in new tab
  7. L.B. Kish, R. Vajtai, C.G. Granqvist, Extracting information from noise spectra of chemical sensors: single sensor electronic noses and tongues, Sens. Actuators B 71 (2000) 55-59. open in new tab
  8. Ł. Lentka, J. Smulko, R. Ionescu, R., C.G. Granqvist, L.B. Kish, Determination of gas mixture components using fluctuation enhanced sensing and the LS-SVM regression algorithm. Metrol. Meas. Syst. 22 (2015) 341-350. open in new tab
  9. M. Kotarski, J. Smulko, Hazardous gases detection by fluctuation-enhanced gas sensing, Fluctuations and Noise Lett. 4 (2010) 359-371. open in new tab
  10. Y. Gui, S. Li, J. Xu, C. Li, Study on TiO2-doped ZnO thick film gas sensors enhanced by UV light at room temperature, Microelectron. J. 39 (2008) 1120-1125. open in new tab
  11. L. Deng, X. Ding, D. Zeng, S. Tian, H. Li, C. Xie, Visible-light activate mesoporous WO3 sensors with enhanced formaldehyde-sensing property at room temperature, Sens. Actuators B 163 (2012) 260-266. open in new tab
  12. Q. Geng, Z. He, X. Chen, W. Dai, X. Wang, Gas sensing property of ZnO under visible light irradiation at room temperature, Sens. Actuators B 188 (2013) 293-297. open in new tab
  13. M.-H. Chen, C.-S. Lu, R.-J. Wu, Novel Pt/TiO2-WO3 materials irradiated by visible light used in a photoreductive ozone sensor, J. Taiwan Inst. Chem. Eng. 45 (2014) 1043-1048. open in new tab
  14. M. Radecka, K. Zakrzewska, M. Rękas, SnO2-TiO2 solid solutions for gas sensors. Sens. Actuators B 47 (1998) 194-204. open in new tab
  15. C.G. Granqvist, S. Green, E.K. Jonson, R. Marsal, G.A. Niklasson, A. Roos, L.B. Kish, Electrochromic foil-based devices: Optical transmittance and modulation range, effect of ultraviolet irradiation, and quality assessment by 1/f current noise. Thin Solid Films 516 (2008) 5921-5926. open in new tab
  16. M. Kiwilszo, J. Smulko, Pitting corrosion characterization by electrochemical noise measurements on asymmetric electrodes. J. Solid State Electrochem. 13 (2009) 1681- 1686. open in new tab
  17. S. Kogan, Electronic noise and fluctuations in solids. Cambridge University Press, 2008. open in new tab
  18. T. Contraret, T. Florido, J.L. Seguin, K. Aguir, A physics-based noise model for metallic oxide gas sensors characterization, Procedia Eng. 25 (2011) 375-378. open in new tab
  19. S. Gomri, J. Seguin, J. Guerin, K. Aguir, Adsorption-desorption noise in gas sensors: Modelling using Langmuir and Wolkenstein models for adsorption, Sens. Actuators B 114 (2006) 451-459. open in new tab
  20. S. Gomri, J.L. Seguin, J. Guein, K. Aguir, A mobility and free carriers density fluctuations based model of adsorption-desorption noise in gas sensor, J. Phys. D: Appl. Phys. 41 (2008) 065501/1-065501/11. open in new tab
  21. Z. Topalian, J. Smulko, G.A. Niklasson, C.G. Granqvist, Resistance noise in TiO2-based thin film gas sensors under ultraviolet irradiation, J. Phys. Conf. Ser. 76 (2007) 1-5. open in new tab
  22. T.Y. Yang, H.M. Lin, B.Y. Wei, C.Y. Wu, C.K Lin, UV enhancement of the gas sensing properties of nano-TiO2, Rev. Adv. Mater. Sci. 4 (2003) 48-54.
  23. S. Mishra, C. Ghanshyam, N. Ram, R. P. Bajpai, R. K. Bedi, Detection mechanism of metal oxide gas sensor under UV radiation, Sens. Actuators B 97 (2004) 387-390. open in new tab
  24. H.U. Lee, S.C. Lee, S. Choi, B. Son, H. Kim, S.M. Lee, H.J. Kim, J. Lee, Influence of visible- light irradiation on physicochemical and photocatalytic properties of nitrogen-doped three-dimensional (3D) titanium dioxide, J. Hazard. Mater. 258 (2013) 10-18. open in new tab
  25. Y.-D. Wang, Z.-X. Chen, Y.-F. Li, X.-H. Wu, Electrical and gas sensing properties of WO3 semiconductor material, Solid-State Electron., 45 (2001) 639-644.
  26. J. Zeng, M. Hu, W. Wang, H. Chen, Y. Qin, NO2-sensing properties of porous WO3 gas sensor based on anodized sputtered tungsten thin film, Sens. Actuators B 161 (2012) 447-452. open in new tab
  27. Z. Hua, M. Yuasa, T. Kida, N. Yamazoe, K. Shimanoe, High sensitive gas sensor based on Pd-loaded WO3 nanolamellae, Thin Solid Films 548 (2013) 677-682. open in new tab
  28. F. Annanouch, S. Vallejos, C. Blackman, X. Correig, E. Llobet, CO and H2 sensing with CVD-grown tungsten oxide nanoneedles decorated with Au, Pt or Cu nanoparticles, Procedia Eng. 47 (2012) 904-907. open in new tab
  29. R. Ionescu, A. Hoel, C.G. Granqvist, E. Llobet, P. Heszler, Low-level detection of ethanol and H2S with temperature-modulated WO3 nanoparticle gas sensors, Sens. Actuators B 104 (2005) 132-139. open in new tab
  30. S. Vallejos, P. Umek, T. Stoycheva, F. Annanouch, E. Llobet, X. Correig, P. De Marco, C. Bittencourt, C. Blackman, Single-step deposition of Au-and Pt-nanoparticle- functionalized tungsten oxide nanoneedles synthesized via aerosol-assisted CVD, and used for fabrication of selective gas microsensor arrays, Adv. Funct. Mater. 23 (2013) 1313-1322. open in new tab
  31. W. Zeng, C. Dong, B. Miao, H. Zhang, S. Xu, X. Ding, S. Hussain, Preparation, characterization and gas sensing properties of sub-micron porous WO3 spheres, Mater. Lett. 117 (2014) 41-44. open in new tab
  32. T5F Technical Data Sheet, Seoul Optodevice, rev0.0, April 2010, www.socled.com. open in new tab
  33. OSV4YL5451B Data Sheet, OptoSupply, LED & Application Technologies, ver.A.2. open in new tab
  34. Y. Shigesato, Photochromic properties of amorphous WO3 films, Jpn. J. Appl. Phys. 30 (1991) 1457-1462. open in new tab
  35. Z.D. Meng, L. Zhu, J.G. Choi, C.Y. Park, W.C. Oh, Preparation, characterization and photocatalytic behavior of WO3-fullerene/TiO2 catalysts under visible light, Nanoscale Res. Lett. 6 (2011) 1-11. open in new tab
  36. J.D. Vincent, J. Vampola, G. Pierce, M. Stegall, S. Hodges, Fundamentals of Infrared and Visible Detector Operation and Testing, Wiley and Sons, 2015. open in new tab
  37. A. Giberti, C. Malagù, V. Guidi, WO3 sensing properties enhanced by UV illumination: An evidence of surface effect, Sens. Actuators B 165 (2012) 59-61. open in new tab
  38. Y. Shigesato, Photochromic properties of amorphous WO3 films, Jpn. J. Appl. Phys. 30 (1991) 1457-1462. open in new tab
  39. K. Aguir, C. Lemire, D.B.B. Lollman, Electrical properties of reactively sputtered WO3 thin films as ozone gas sensor, Sens. Actuators B 84 (2002) 1-5. open in new tab
Verified by:
Gdańsk University of Technology

seen 155 times

Recommended for you

Meta Tags