g-C3N4 for Photocatalytic Degradation of Parabens: Precursors Influence, the Radiation Source and Simultaneous Ozonation Evaluation
Abstract
Graphitic carbon nitride (g-C3N4) is a promising catalyst for contaminants of emerging concern removal applications, especially as a visible-light-driven material. In this study, g-C3N4 catalysts were effectively synthesized through a simple thermal polymerization method, using melamine, urea, and thiourea as precursors to elucidate the influence of these compounds on the final product’s photocatalytic performance. The degradation of a mixture of three parabens was investigated under different types of radiation: two artificial, ultraviolet-A (UVA) and visible LED, and natural sunlight. The urea-based catalyst (UCN) presented better results under all radiation sources, followed by thiourea, and finally, melamine. Among the artificial light sources, the degradation of parabens under UVA was considerably higher than visible—up to 51% and 21%, respectively—using UCN; however, the broader spectrum of natural sunlight was able to achieve the highest removals, up to 92%, using UCN. Comparing artificial radiation sources, UVA lamps presented 45% lower energy consumption and associated costs. Photocatalytic ozonation was tested using UCN and MCN, with UCN once more possessing superior performance and a synergetic effect between photocatalysis and ozonation, with complete removal under 12 min. The use of g-C3N4 was then successfully tested in initial screening and found to be an efficient alternative in more low-cost and feasible solar photocatalysis water treatment.
Citations
-
6
CrossRef
-
0
Web of Science
-
7
Scopus
Authors (6)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/catal13050789
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Catalysts
no. 13,
ISSN: 2073-4344 - Language:
- English
- Publication year:
- 2023
- Bibliographic description:
- Fernandes E., Mazierski P., Klimczuk T., Zaleska-Medynska A., Martins R. F., Gomes J.: g-C3N4 for Photocatalytic Degradation of Parabens: Precursors Influence, the Radiation Source and Simultaneous Ozonation Evaluation// Catalysts -Vol. 13,iss. 5 (2023), s.789-
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/catal13050789
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 51 times
Recommended for you
The role of noble metals in TiO2 nanotubes for the abatement of parabens by photocatalysis, catalytic and photocatalytic ozonation
- J. Lincho,
- E. Domingues,
- P. Mazierski
- + 5 authors
Carbon nitride exfoliation for photocatalysis and photocatalytic ozonation over emerging contaminants abatement
- E. Fernandes,
- P. Mazierski,
- M. Miodyńska
- + 5 authors
TiO2 nanotube arrays-based reactor for photocatalytic oxidation of parabens mixtures in ultrapure water: Effects of photocatalyst properties, operational parameters and light source
- J. Gomes,
- J. Lincho,
- M. Domingues
- + 7 authors
Stannates, titanates and tantalates modified with carbon and graphene quantum dots for enhancement of visible-light photocatalytic activity
- M. Paszkiewicz-Gawron,
- K. Ewa,
- M. Endo-Kimura
- + 7 authors