Galerkin formulations with Greville quadrature rules for isogeometric shell analysis: Higher order elements and locking - Publication - Bridge of Knowledge

Search

Galerkin formulations with Greville quadrature rules for isogeometric shell analysis: Higher order elements and locking

Abstract

We propose new Greville quadrature schemes that asymptotically require only four in-plane points for Reissner-Mindlin (RM) shell elements and nine in-plane points for Kirchhoff-Love (KL) shell elements in B-spline and NURBS-based isogeometric shell analysis, independent of the polynomial degree of the elements. For polynomial degrees 5 and 6, the approach delivers high accuracy, low computational cost, and alleviates membrane and transverse shear locking.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Authors (5)

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Monographic publication
Type:
rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
Language:
English
Publication year:
2022
Bibliographic description:
Hughes T., Zou Z., Scott M., Sauer R., Savitha E.: Galerkin formulations with Greville quadrature rules for isogeometric shell analysis: Higher order elements and locking// Current Trends and Open Problems in Computational Mechanics/ : , , s.207-215
DOI:
Digital Object Identifier (open in new tab) 10.1007/978-3-030-87312-7_21
Sources of funding:
  • Free publication
Verified by:
Gdańsk University of Technology

seen 82 times

Recommended for you

Meta Tags