Glaciers as an Important Element of the World Glacier Monitoring Implemented in Svalbard - Publication - Bridge of Knowledge

Search

Glaciers as an Important Element of the World Glacier Monitoring Implemented in Svalbard

Abstract

Glaciers are not only contributors to the sea level rise but also important players in the circulation of pollutants. Over a billion people apply glacial waters for domestic purposes; hence, both the quality and quantity of this water should be monitored. In this chapter, we concentrate on the archipelago Svalbard in the Arctic, a typical target area for xenobiotics from long range atmospheric transport (LRAT), holding an important share of the Arctic glacial ice cover. Literature review has been conducted over both the cryospheric metrics and the achievements of analytical chemistry in the environmental monitoring. Svalbard is a relatively well-monitored part of the Arctic, with 17 glaciers regularly monitored for mass balance. In the chemical records of glaciers, a variety of substances have been determined, e.g., ions, heavy metals, or persistent organic pollutants (POPs), with the use of precise analytical techniques. However, knowledge gaps persist, preventing a formation of a reliable chemical inventory of Svalbard glaciers. Moreover, detailed studies on the deposition and transport of pollutants, rather than focusing on their presence only, are crucial future research recommendations.

Citations

  • 2

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cite as

Full text

download paper
downloaded 50 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Monographic publication
Type:
rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
Title of issue:
W : Glaciers Evolution in a Changing World strony 3 - 36
Language:
English
Publication year:
2017
Bibliographic description:
Lehmann-Konera S., Ruman M., Kozioł K., Gajek g., Polkowska Ż.: Glaciers as an Important Element of the World Glacier Monitoring Implemented in Svalbard// Glacier Evolution in a Changing World/ ed. Danilo Godone Chorwacja: INTECH, 2017, s.3-36
DOI:
Digital Object Identifier (open in new tab) 10.5772/intechopen.69237
Bibliography: test
  1. Bogdal C, Schmid P, Zennegg M, Anselmetti FS, Scheringer M, Hungerbühler K. Blast from the past: Melting glaciers as a relevant source for persistent organic pollutants. Environmental Science & Technology. 2009;43:8173-8177 open in new tab
  2. Grannas AM, Bogdal C, Hageman KJ, Halsall C, Harner T, Hung H, Kallenborn R, Klán P, Klánová J, Macdonald RW, Meyer T, Wania F. The role of the global cryosphere in the fate of organic contaminants. Atmospheric Chemistry and Physics. 2013;13:3271-3305 open in new tab
  3. Hodson AJ. Understanding the dynamics of black carbon and associated contaminants in glacial systems. WIREs Water. 2014;1:141-149. DOI: 10.1002/wat2.1016 open in new tab
  4. ACIA. Arctic Climate Impact Assesment. Cambridge University Press. Cambridge: 2005. p. 1042. http://www.acia.uaf.edu (19.07.2014): 183-242 open in new tab
  5. IPCC 2013, Vaughan DG, Comiso JC, Allison I, Carrasco J, Kaser G, Mote P, et al. Obser- vations: cryosphere. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, et al, editors. Climate Change 2013: The Physical Science Basis. Contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2013 open in new tab
  6. Jansson P, Hock R, Schneider T. The concept of glacier storage: A review. Journal of Hydrol- ogy. 2003;282(1):116-129 open in new tab
  7. Błaszczyk M, Jania JA, Hagen JO. Tidewater glaciers of Svalbard: Recent changes and estimates of calving fluxes. Polish Polar Research. 2009;30(2):85-142 open in new tab
  8. Nuth C, Moholdt G, Kohler J, Hagen JO and Kääb A. Svalbard glacier elevation changes and contribution to sea level rise. Journal of Geophysical Research. 2010;115:F01008. DOI: 10.1029/2008JF001223 open in new tab
  9. Ruman M, Kozak K, Lehmann S, Kozioł K, Polkowska Ż. Pollutants present in different components of the Svalbard archipelago environment. Ecological Chemistry and Engi- neering S. 2012;19(4):571-584 open in new tab
  10. Kozak K, Polkowska Ż, Ruman M, Kozioł K, Namieśnik J. Analytical studies on the environmental state of the Svalbard Archipelago provide a critical source of information about anthropogenic global impact. TrAC Trends in Analytical Chemistry. 2013;50:107-126 open in new tab
  11. Jiao L, Zheng GJ, Minh TB, Richardson B, Chen L, Zhang Y, et al. Persistent toxic sub- stances in remote lake and coastal sediments from Svalbard, Norwegian Arctic: Levels, sources and fluxes. Environmental Pollution. 2009;157:1342-1351 open in new tab
  12. Dragon K, Marciniak M. Chemical composition of groundwater and surface water in the Arctic environment (Petuniabukta region, central Spitsbergen). Journal of Hydrology. 2010;386(1):160-172 open in new tab
  13. Brown GH. Glacier meltwater hydrochemistry. Applied Geochemistry. 2002;17(7):855-883 open in new tab
  14. Cuffey K, Paterson WSB. The Physics of Glaciers. 4th ed. Academic Press;
  15. San Diego, United States: 2010
  16. Irvine Flynn TDL, Hodson AJ, Mooram BJ, Vatne G, Hubbard AL. Polythermal glacier hydrology: A review. Reviews of Geophysics. 2011;49(4):RG4002. DOI: 10.1029/2010RG000350 open in new tab
  17. Jania J. Glacjologia. Nauka o Lodowcach. Warszawa: PWN. 1993. p. 358
  18. Sugden DE, John BS. Glaciers and Landscape. A Geomorphological Approach. London: Edward Arnold. 1976. p. 376
  19. Głowacki P. Rola procesów fizyczno-chemicznych w kształtowaniu struktury wewnętrznej i obiegu masy lodowców Spitsbergenu. Publications of the Institute of Geophysics. Polish Academy of Sciences. 2007; open in new tab
  20. M-30(400):147 open in new tab
  21. Kääb A, Huggel C, Paul F, Wessels R, Raup B, Kieffer H, Kargel J. Glacier monitoring from ASTER imagery: Accuracy and applications. In Proceedings of EARSeL-LISSIG- Workshop Observing our Cryosphere from Space. 2002;2: 43-53 open in new tab
  22. Roer I. Global glacier changes: Facts and figures. In: Zemp M, van Woerden J, editors. UNEP/Earthprint; 2008
  23. Glaciers as an Important Element of the World Glacier Monitoring Implemented in Svalbard http://dx.doi.org/10.5772/intechopen.69237 open in new tab
  24. GLIMS Information from: http://www.glims.org/[date:19.08.2014] open in new tab
  25. Zemp M. The monitoring of glaciers at local, mountain, and global scale. Geographisches Institut der Universität Zürich. 2012;65 open in new tab
  26. Kargel JS. Global land ice measurements from space. In: Leonard GJ, Bishop MP, Kääb A, Raup BH, editors. Heidelberg: Springer; 2013. ISBN 978-3-540-79818-1 (eBook) open in new tab
  27. GTN-G Information. Available from: http://www.gtn-g.org/ [Accessed date August 19, 2014]
  28. UIO Information. Available from: http://www.mn.uio.no [Accessed date August 19, 2014] open in new tab
  29. ICE2SEA Information. Available from: http://www.ice2sea.eu [Accessed date August 19, 2014] open in new tab
  30. SVALGLAC Information. Available from: http://svalglac.eu [Accessed date August 19, 2014] open in new tab
  31. GLACIODYN Information. Available from: http://www.unis.no/ [Accessed date August 19, 2014] open in new tab
  32. Sharp M, Wolken G, Geail ML, Burgess D, Cogley JG, Arendt A, Wouters B. Mountain Glaciers and Ice Caps (Outside Greenland)[in Arctic Report Card 2013], ftp://ftp.oar.noaa. gov/arctic/documents/ArcticReportCard_full_report2013.pdf [date: 19.08.2014], p. 108.
  33. Hagen JO, Liestøl O, Roland E, Jørgensen T. Glacier atlas of Svalbard and Jan Mayen. Norsk Polarinstitutt Meddelelser; 1993. p. 129 open in new tab
  34. Ziaja W, Skiba S. [ed.] Structure and functioning of the Sorkappland natural environment [in Polish: Struktura i funkcjonowanie środowiska przyrodniczego Sorkapplandu]. open in new tab
  35. Kraków: UJ; 2002. open in new tab
  36. Hagen JO, Kohler J, Melvold K, Winther JG. Glaciers in Svalbard: Mass balance, runoff and freshwater flux. Polar Research. 2003;22(2):145-159 open in new tab
  37. Głowacki P. The mass balance of Hans glacier in the light of cryochemical investigation. In: P Głowacki, editor. Pol Polar Stud 1997. 24th Polar Symposium, Warszawa, 1997. Warszawa: Institute of Geophysics of the Polish Academy of Sciences; 1997. pp. 75-79 open in new tab
  38. Hodson A, Tranter M, Gurnell A, Clark M, Hagen JO. The hydrochemistry of Bayelva, a high Arctic proglacial stream in Svalbard. Journal of Hydrology. 2002;257:91-114 open in new tab
  39. Krawczyk WE, Lefauconnier B, Pettersson LE. Chemical denudation rates in the Bayelva Catchment, Svalbard, in the Fall of 2000. Physics and Chemistry of the Earth Parts A/B/C. 2003;28(28):1257-1271 open in new tab
  40. Nowak A, Hodson A. Changes in meltwater chemistry over a 20-year period following a thermal regime switch from polythermal to cold-based glaciation at Austre Brøggerbreen, Svalbard. Polar Research. 2014;33: 1-19. Article number: 22779. DOI: 10.3402/polar.v33.22779 open in new tab
  41. Stachnik Ł, Majchrowska E, Yde JC, Nawrot AP, Cichała-Kamrowska K, Ignatiuk D, Piechota A. Chemical denudation and the role of sulfide oxidation at Werenskioldbreen, Svalbard. Journal of Hydrology. 2016;538:177-193 open in new tab
  42. Tye AM, Heaton THE. Chemical and isotopic characteristics of weathering and nitrogen release in non-glacial drainage waters on Arctic tundra. Geochimica et Cosmochimica Acta. 2007;71:4188-4205 open in new tab
  43. Stachnik Ł, Yde JC, Kondracka M, Ignatiuk D, Grzesik M. Glacier naled evolution and relation to the subglacial drainage system based on water chemistry and GPR surveys (Werenskioldbreen, SW Svalbard). Annals of Glaciology. 2016;57:1-12 open in new tab
  44. Wynn PM, Hodson AJ, Heaton THE, Chenery SR. Nitrate production beneath a high Arctic glacier, Svalbard. Chemical Geology. 2007;244:88-102 open in new tab
  45. AMAP 2016. AMAP Assessment 2015: Temporal Trends in Persistent Organic Pollutants in the Arctic. Oslo; pp. i-71 open in new tab
  46. Wang-Andersen G, Utne Skaare J, Prestrud P, Steinnes E. Levels and congener pattern of PCBs in arctic fox (Alopex lagopus) in Svalbard. Environmental Pollution. 1993;82(3):269-275 open in new tab
  47. Bernhoft A, Wiig Ø, Skaare JU. Organochlorines in polar bears (Ursus maritimus) at Svalbard. Environmental Pollution. 1997;95(2):159-175 open in new tab
  48. Kleivane L, Severinsen T, Skaare JU. Biological transport and mammal to mammal transfer of organochlorines in Arctic fauna. Marine Environmental Research. 2000;49(4):343-357 open in new tab
  49. Henriksen EO, Wiig Ø, Skaare JU, Gabrielsen GW, Derocher AE. Monitoring PCBs in polar bears: Lessons learned from Svalbard. Journal of Environmental Monitoring. 2001;3 (5):493-498 open in new tab
  50. Fuglei E, Bustnes JO, Hop H, Mørk T, Björnfoth H, Van Bavel B. Environmental contam- inants in arctic foxes (Alopex lagopus) in Svalbard: Relationships with feeding ecology and body condition. Environmental Pollution. 2007;146(1):128-138 open in new tab
  51. Routti H, Letcher RJ, Chu S, Van Bavel B, Gabrielsen GW. Polybrominated diphenyl ethers and their hydroxylated analogues in ringed seals (Phoca hispida) from Svalbard and the Baltic Sea. Environmental Science & Technology. 2009;43(10):3494-3499 open in new tab
  52. Letcher RJ, Bustnes JO, Dietz R, Jenssen BM, Jørgensen EH, et al. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish. Science of the Total Environment. 2010;408(15):2995-3043 open in new tab
  53. Kwok KY, Yamazaki E, Yamashita N, Sachi Taniyasu S, Murphy MB. Transport of perfluoroalkyl substances (PFAS) from an arctic glacier to downstreamlocations: Impli- cations for sources. Science of the Total Environment. 2013;447:46-55 open in new tab
  54. Hallanger IG, Ruus A, Herzke D, Warner NA, Evenset A, et al. Influence of season, location, and feeding strategy on bioaccumulation of halogenated organic contaminants in Arctic marine zooplankton. Environmental Toxicology and Chemistry. 2011;30(1):77-87 open in new tab
  55. Vallack HW, Bakker DJ, Brandt I, Broström-Lundén E, Brouwer A. Controlling persistent organic pollutants-What next? Environmental Toxicology and Pharmacology. 1998;6(3): 143-175 open in new tab
  56. Glaciers as an Important Element of the World Glacier Monitoring Implemented in Svalbard http://dx.doi.org/10.5772/intechopen.69237 open in new tab
  57. Lohmann R, Breivik K, Dachs J, Muir D. Global fate of POPs: Current and future research directions. Environmental Pollution. 2007;150(1):150-165 open in new tab
  58. Macdonald RW, Barrie LA, Bidleman TF, Diamond ML, Gregor DJ. Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Science of the Total Environment. 2000;254(2):93-234 open in new tab
  59. Wania F, Mackay D. The evolution of mass balance models of persistent organic pollutant fate in the environment. Environmental Pollution. 1999;100(1):223-240 open in new tab
  60. Drbal K, Elster J, Komarek J. Heavy metals in water, ice and biological material from Spitsbergen, Svalbard. Polar Research. 1992;11(2):99-101 open in new tab
  61. Wang Z, Ma X, Na G, Lin Z, Ding Q, Yao Z. Correlations between physicochemical properties of PAHs and their distribution in soil, moss and reindeer dung at Ny-Ålesund of the Arctic. Environmental Pollution. 2009;157(11):3132-3136 open in new tab
  62. Hoekstra PF, Braune BM, O'Hara TM, Elkin B, Solomon KR, Muir DCG. Organochlorine contaminant and stable isotope profiles in Arctic fox (Alopex lagopus) from the Alaskan and Canadian Arctic. Environmental Pollution. 2003;122(3):423-433 open in new tab
  63. Gabrielsen GW. Levels and effects of persistent organic pollutants in arctic animals. In Arctic Alpine Ecosystems and People in a Changing Environment. Berlin Heidelberg; open in new tab
  64. Springer; 2007. pp. 377-412
  65. Bang K, Jenssen BM, Lydersen C, Skåre JU. Organochlorine burdens in blood of ringed and bearded seals from north-western Svalbard. Chemosphere. 2001;44(2):193-203 open in new tab
  66. Weber J, Halsall CJ, Muir D, Teixeira C, Small J, et al. Endosulfan, a global pesticide: A review of its fate in the environment and occurrence in the Arctic. Science of the Total Environment. 2010;408(15):2966-2984 open in new tab
  67. Bidleman TF, Helm PA, Braune BM, Gabrielsen GW. Polychlorinated naphthalenes in polar environments-A review. Science of the Total Environment. 2010;408(15):2919-2935 open in new tab
  68. Wong F, Jantunen LM, Pucko M, Papakyriakou T, Staebler RM, Stern GA, Bidleman TF. Air-water exchange of anthropogenic and natural organohalogens on International Polar Year (IPY) expeditions in the Canadian Arctic. Environmental Science & Technology. 2010;45(3):876-881 open in new tab
  69. Kallenborn R, Christensen G, Evenset A, Schlabach M, Stohl A. Atmospheric transport of persistent organic pollutants (POPs) to Bjørnøya (Bear island). Journal of Environmental Monitoring. 2007;9(10):1082-1091 open in new tab
  70. Hung H, Kallenborn R, Breivik K, Su Y, Brorström-Lundén E, et al. Atmospheric monitor- ing of organic pollutants in the Arctic under the Arctic Monitoring and Assessment Programme (AMAP): 1993-2006. Science of the Total Environment. 2010;408(15):2854-2873 open in new tab
  71. Stutter MI, Billett MF. Biogeochemical controls on streamwater and soil solution chemis- try in a High Arctic environment. Geoderma. 2003;113(1):127-146 open in new tab
  72. De Caritat P, Hall G, Gìslason S, Belsey W, Braun M. Chemical composition of arctic snow: Concentration levels and regional distribution of major elements. Science of the Total Environment. 2005;336(1):183-199 open in new tab
  73. Larose C, Dommergue A, De Angelis M, Cossa D, Averty B, et al. Springtime changes in snow chemistry lead to new insights into mercury methylation in the Arctic. Geochimica et Cosmochimica Acta. 2010;74(22):6263-6275 open in new tab
  74. Hodgkins R, Tranter M. Solute in High Arctic glacier snow cover and its impact on run- off chemistry. Annals of Glaciology. 1998;26:156-160 open in new tab
  75. Ferraria CP, Padova C, Faïn X, Gauchard PA, Dommergue A, et al. Atmospheric mercury depletion event study in Ny-Alesund (Svalbard) in spring 2005. Deposition and transfor- mation of Hg in surface snow during springtime. Science of the Total Environment. 2008;397(1):167-177 open in new tab
  76. Herbert BMJ, Halsall CJ, Villa S, Jones K C, Kallenborn R. Rapid changes in PCB and OC pesticide concentrations in Arctic snow. Environmental Science & Technology. 2005a;39 (9):2998-3005 open in new tab
  77. Herbert BMJ, Halsall CJ, Villa S, Fitzpatrick L, Jones KC, et al. Polychlorinated naphtha- lenes in air and snow in the Norwegian Arctic: A local source or an Eastern Arctic phenomenon? Science of the Total Environment. 2005b;342(1):145-160 open in new tab
  78. Chmiel S, Reszka M, Rysiak A. Heavy metals and radioactivity in environmental samples of the Scott Glacier region on Spitsbergen in summer 2005. Quaestiones Geographicae 28A/1. Poznań: Adam Mickiewicz University Press; 2009. pp. 23-29. ISBN 978-83-232- 2128-9
  79. Hermanson MH, Isaksson E, Teixeira C, Muir DC, Compher KM, et al. Current-use and legacy pesticide history in the Austfonna ice cap, Svalbard, Norway. Environmental Science & Technology. 2005;39(21):8163-8169 open in new tab
  80. Ruggirello RM, Hermanson MH, Isaksson E, Teixeira C, Forsström S, et al. Current use and legacy pesticide deposition to ice caps on Svalbard, Norway. Journal of Geophysical Research Atmospheres. 2010;115(D18):1-11. Article number: D18308 open in new tab
  81. Wadham JL, Cooper RJ, Tranter M, Bottrell S. Evidence for widespread anoxia in the proglacial zone of an Arctic glacier. Chemical Geology. 2007;243(1):1-15 open in new tab
  82. Rutter N, Hodson A, Irvine-Fynn T, Solås MK. Hydrology and hydrochemistry of a deglaciating high-Arctic catchment, Svalbard. Journal of Hydrology. 2011;410(1):39-50 open in new tab
  83. Telling J, Anesio AM, Tranter M, Irvine-Fynn T, Hodson A, et al. Nitrogen fixation on Arctic glaciers, Svalbard. Journal of Geophysical Research Biogeosciences. 2011;116:1-8;Article number: G03039 open in new tab
  84. Pulina M, Burzyk M. Fuglebekken catchment [in Polish]. In: Glaciological workshops 2004;
  85. Polish Geomorphologists Association, Sosnowiec-Poznań-Longyearbyen. 2004;VI:58-62 open in new tab
  86. Glaciers as an Important Element of the World Glacier Monitoring Implemented in Svalbard http://dx.doi.org/10.5772/intechopen.69237 open in new tab
  87. Stibal M, Tranter M. Laboratory investigation of inorganic carbon uptake by cryoconite debris from Werenskioldbreen, Svalbard. Journal of Geophysical Research. 2007;112:9; open in new tab
  88. G04S33. DOI: 10.1029/2007JG000429 open in new tab
  89. Taurisano A, Schuler TV, Hagen JO, Eiken T, Loe E, Melvold K, Kohler J. The distribution of snow accumulation across the Austfonna ice cap, Svalbard: Direct measurements and modelling. Polar Research. 2007;26(1):7-13 open in new tab
  90. Kääb A. Glacier volume changes using ASTER satellite stereo and ICESat GLAS laser altimetry. A test study on edgeoya, eastern svalbard. In: Paper presented at IEEE Interna- tional Geoscience and Remote Sensing Symposium (IGARSS);
  91. Barcelona, Spain. IEEE-Instrumentation Electrical Electronics Engineers Inc; 2008
  92. Rolstad C, Norland R. Ground-based interferometric radar for velocity and calving-rate measurements of the tidewater glacier at Kronebreen, Svalbard. Annals of Glaciology. 2009;50:47-54 open in new tab
  93. Sund M, Eiken T, Hagen JO, Kääb A. Svalbard surge dynamics derived from geometric changes. Annals of Glaciology. 2009;50(52):50-60 open in new tab
  94. Moholdt G, Hagen JO, Eiken T, Schuler TV. Geometric changes and mass balance of the Austfonna ice cap, Svalbard. The Cryosphere. 2010;4:21-34. DOI: 10.5194/tc-4-21-2010 open in new tab
  95. Schuler TV, Loe E, Taurisano A, Eiken T, Hagen JO, Kohler J. Calibrating a surface mass- balance model for Austfonna ice cap, Svalbard. Annals of Glaciology. 2007;46(1):241-248 open in new tab
  96. Norheim G, Kjos-Hanssen B. Persistent chlorinated hydrocarbons and mercury in birds caught off the west coast of Spitsbergen. Environmental Pollution Series A. 1984;33 (2):143-152 open in new tab
  97. Vieweg I, Hop H, Brey T, Huber S, Ambrose Jr WG, Locke VWL, Gabrielsen GW. Persistent organic pollutants in four bivalve species from Svalbard waters. Environmental Pollution. 2012;161:134-142 open in new tab
  98. Lehmann S, Gajek G, Chmiel S, Polkowska Ż. Do morphometric parameters and geolog- ical conditions determine chemistry of glacier surface ice? Spatial distribution of contam- inants present in the surface ice of Spitsbergen glaciers (European Arctic). Environmental Science and Pollution Research. 2016;23(23):23385-23405 open in new tab
Verified by:
Gdańsk University of Technology

seen 207 times

Recommended for you

Meta Tags