Heterogeneous distribution of surface electrochemical activity in polycrystalline highly boron-doped diamond electrodes under deep anodic polarization - Publication - Bridge of Knowledge

Search

Heterogeneous distribution of surface electrochemical activity in polycrystalline highly boron-doped diamond electrodes under deep anodic polarization

Abstract

The surface homogeneity of boron-doped diamond electrodes is variable and depends on anodic polarization conditions. The differentiation factor is the gradual and localized change in surface termination. A series of measurements under different polarization conditions was performed in order to investigate the scale of this effect. Nanoscale impedance microscopy (NIM) revealed large variation of surface resistance in individual grains. Based on the obtained results, we claim that the level of electrochemical heterogeneity significantly depends on the crystallographic texture of BDD. Modification of boron-doped diamond surface termination under anodic oxidation is assumed to be a multistage process.

Citations

  • 1 1

    CrossRef

  • 0

    Web of Science

  • 1 1

    Scopus

Cite as

Full text

download paper
downloaded 34 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
ELECTROCHEMISTRY COMMUNICATIONS no. 83, pages 41 - 45,
ISSN: 1388-2481
Language:
English
Publication year:
2017
Bibliographic description:
Ryl J., Zieliński A., Bogdanowicz R., Darowicki K.: Heterogeneous distribution of surface electrochemical activity in polycrystalline highly boron-doped diamond electrodes under deep anodic polarization// ELECTROCHEMISTRY COMMUNICATIONS. -Vol. 83, (2017), s.41-45
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.elecom.2017.08.019
Bibliography: test
  1. K.B. Holt, A.J. Bard, Y. Show, G.M. Swain, Scanning electrochemical microscopy and conductive probe atomic force microscopy studies of hydrogen-terminated boron-doped diamond electrodes with different doping levels, J. Phys. Chem. B 108 (2004) 15117-15127, http://dx.doi.org/10.1021/jp048222x. open in new tab
  2. T. Kolber, K. Piplits, R. Haubner, H. Hutter, Quantitative investigation of boron incorporation in polycrystalline CVD diamond films by SIMS, Fresenius J. Anal. Chem. 365 (1999) 636-641, http://dx.doi.org/10.1007/s002160051537. open in new tab
  3. J. Ryl, A. Zielinski, L. Burczyk, R. Bogdanowicz, T. Ossowski, K. Darowicki, Chemical-assisted mechanical lapping of thin boron-doped diamond films: a fast route toward high electrochemical performance for sensing devices, Electrochim. Acta 242 (2017) 268-279, http://dx.doi.org/10.1016/j.electacta.2017.05.027. open in new tab
  4. A. Zielinski, R. Bogdanowicz, J. Ryl, L. Burczyk, K. Darowicki, Local impedance imaging of boron-doped polycrystalline diamond thin films, Appl. Phys. Lett. 105 (2014) 131908, http://dx.doi.org/10.1063/1.4897346. open in new tab
  5. D. Becker, K. Juttner, Influence of surface inhomogeneities of boron doped CVD- diamond electrodes on reversible charge transfer reactions, J. Appl. Electrochem. 33 (2003) 959-967, http://dx.doi.org/10.1023/A:1025872013482. open in new tab
  6. D. Becker, K. Juttner, The impedance of fast charge transfer reaction on boron doped diamond electrodes, Electrochim. Acta 49 (2003) 29-39, http://dx.doi.org/ 10.1016/j.electacta.2003.04.003. open in new tab
  7. N.R. Wilson, S.L. Clewes, M.E. Newton, P.R. Unwin, J.V. Macpherson, Impact of grain-dependent boron uptake on the electrochemical and electrical properties of polycrystalline boron doped diamond electrodes, J. Phys. Chem. B 110 (2006) 5639-5646, http://dx.doi.org/10.1021/jp0547616. open in new tab
  8. L.A. Hutton, J.G. Iacobini, E. Bitziou, R.B. Channon, M.E. Newton, J.V. Macpherson, Examination of the factors affecting the electrochemical performance of oxygen- terminated polycrystalline boron-doped diamond electrodes, Anal. Chem. 85 (2013) 7230-7240, http://dx.doi.org/10.1021/ac401042t. open in new tab
  9. M.H.P. Santana, L.A. De Faria, J.F.C. Boodts, Electrochemical characterisation and oxygen evolution at a heavily boron doped diamond electrode, Electrochim. Acta 50 (2005) 2017-2027, http://dx.doi.org/10.1016/j.electacta.2004.08.050. open in new tab
  10. M. Wang, N. Simon, C. Decorse-Pascnut, M. Bouttemy, A. Etcheberry, M. Li, R. Boukherroub, S. Szunerits, Comparison of the chemical composition of boron- doped diamond surfaces upon different oxidation processes, Electrochim. Acta 54 (2009) 5818-5824, http://dx.doi.org/10.1016/j.electacta.2009.05.037. open in new tab
  11. J. Ryl, R. Bogdanowicz, P. Slepski, M. Sobaszek, K. Darowicki, Dynamic electro- chemical impedance spectroscopy (DEIS) as a tool for analyzing surface oxidation processes on boron-doped diamond electrodes, J. Electrochem. Soc. 161 (2014) H359-H364, http://dx.doi.org/10.1149/2.016406jes. open in new tab
  12. S. Carlos Oliveira, A.M. Oliveira-Bret, Voltammetric and electrochemical im- pedance spectroscopy characterization of a cathodic and anodic pre-treated boron doped diamond electrode, Electrochim. Acta 55 (2010) 4599-4605, http://dx.doi. org/10.1016/j.electacta.2010.03.016. open in new tab
  13. P.C. Ricci, A. Anedda, C.M. Carbonaro, F. Clemente, R. Corpino, Electrochemically induced surface modifications in boron-doped diamond films: a Raman spectro- scopy study, Thin Solid Films 482 (2005) 311-317, http://dx.doi.org/10.1016/j.tsf. 2004.11.169. open in new tab
  14. T. Spataru, L. Preda, C. Munteanu, A.I. Caciuleanu, N. Spataru, A. Fujishima, Influence of boron-doped diamond surface termination on the characteristics of titanium dioxide anodically deposited in the presence of a surfactant, J. Electrochem. Soc. 162 (2015) H535-H540, http://dx.doi.org/10.1149/2. 0741508jes. open in new tab
  15. D. Ballutaud, N. Simon, H. Girard, E. Rzepka, B. Bouchet-Fabre, Photoelectron spectroscopy of hydrogen at the polycrystalline diamond surface, Diam. Relat. Mater. 15 (2006) 716-719, http://dx.doi.org/10.1016/j.diamond.2006.01.004. open in new tab
  16. H. Girard, E. de La Rochefoucauld, D. Ballataud, A. Etcheberry, N. Simon, Controlled anodic treatments on boron-doped diamond electrodes monitored by contact angle measurements, Electrochem. Solid-State Lett. 10 (2007) F34-F37, http://dx.doi.org/10.1149/1.2743824. open in new tab
  17. H.B. Suffredini, V.A. Pedrosa, L. Codognoto, S.A.S. Machado, R.C. Rocha-Filho, L.A. Avaca, Enhanced electrochemical response of boron-doped diamond electrodes brought on by a cathodic surface pre-treatment, Electrochim. Acta 49 (2004) 4021-4026, http://dx.doi.org/10.1016/j.electacta.2004.01.082. open in new tab
  18. P. Actis, A. Denoyelle, R. Boukherroub, S. Szunerits, Influence of the surface ter- mination on the electrochemical properties of boron-doped diamond (BDD) inter- faces, Electrochem. Commun. 10 (2008) 402-406, http://dx.doi.org/10.1016/j. elecom.2007.12.032. open in new tab
  19. H. Girard, N. Simon, D. Ballutaud, M. Herlem, A. Etcheberry, Effect of Anodic and Cathodic Treatments on the charge transfer of boron doped diamond electrodes, Diam. Relat. Mater. 16 (2007) 316-325, http://dx.doi.org/10.1016/j.diamond. 2006.06.009. open in new tab
  20. H. Girard, N. Simon, D. Ballutaud, E. de La Rochefoucauld, A. Etcheberry, Effects of controlled anodic treatments on electrochemical behaviour of boron doped dia- mond, Diam. Relat. Mater. 16 (2007) 888-891, http://dx.doi.org/10.1016/j. diamond.2006.12.002. open in new tab
  21. T.N. Rao, D.A. Tryk, K. Hashimoto, A. Fujishima, Band-edge movements of semi- conducting diamond in aqueous electrolyte induced by anodic surface treatment, J. Electrochem. Soc. 146 (1999) 680-684, http://dx.doi.org/10.1149/1.1391662. open in new tab
  22. E. Vanhove, J. de Sanoit, J.C. Arnault, S. Saada, C. Mer, P. Mailley, P. Bergonzo, M. Nesladek, Stability of H-terminated BDD electrodes: an insight into the influence of the surface preparation, Phys. Status Solidi A 204 (2007) 2931-2939, http://dx. doi.org/10.1002/pssa.200776340. open in new tab
  23. R. Hoffmann, H. Obloh, N. Tokuda, N. Yang, C.E. Nebel, Fractional surface termi- nation of diamond by electrochemical oxidation, Langmuir 28 (2012) 47-50, http://dx.doi.org/10.1021/la2039366. open in new tab
  24. T. Spataru, P. Osiceanu, M. Anastasescu, G. Patrinolu, C. Munteanu, N. Spataru, A. Fujishima, Effect of the chemical termination of conductive diamond substrate open in new tab
  25. Fig. 3. High-resolution XPS spectra in the energy range of C1s measured for each in- vestigated sample. Table in the inset presents chemical analysis after deconvolution. on the resistance to carbon monoxide-poisoning during methanol oxidation of platinum particles, J. Power Sources 261 (2014) 86-92, http://dx.doi.org/10.1016/ j.jpowsour.2014.03.044. open in new tab
  26. D.A. Tryk, K. Tsunozaki, T.N. Rao, A. Fujishima, Relationships between surface character and electrochemical processes on diamond electrodes: dual roles of sur- face termination and near-surface hydrogen, Diam. Relat. Mater. 10 (2001) 1804-1809, http://dx.doi.org/10.1016/S0925-9635(01)00453-8. open in new tab
  27. J. Svanberg-Larsson, G.W. Nelson, S. Escobar Steinvall, B.F. Leo, E. Brooke, D.J. Payne, J.S. Foord, A comparison of explicitly-terminated diamond electrodes decorated with gold nanoparticles, Electroanalysis 28 (2016) 88-95, http://dx.doi. org/10.1002/elan.201500442. open in new tab
  28. I. Duo, A. Fujishima, Ch. Comninellis, Electron transfer kinetics on composite dia- mond (sp 3 )-graphite (sp 2 ) electrodes, Electrochem. Commun. 5 (2003) 695-700, http://dx.doi.org/10.1016/S1388-2481(03)00169-3. open in new tab
  29. G.P. Morris, A.N. Simonov, E.A. Mashkina, R. Bordas, K. Gillow, R.E. Baker, D.J. Gavaghan, A.M. Bond, A comparison of fully automated methods of data analysis and computer assisted heuristic methods in an electrode kinetic study of the pathologically bariable [Fe(CN) 6 ] 3 −/4-process by AC voltammetry, Anal. Chem. 85 (2013) 11780-11787, http://dx.doi.org/10.1021/ac4022105. open in new tab
  30. G.R. Salazar-Banda, K.I.B. Eguiluz, A.E. de Carvalho, L.A. Avaca, Ultramicroelectrode array behavior of electrochemically partially blocked boron- doped diamond surface, J. Braz. Chem. Soc. 24 (7) (2013) 1206-1211, http://dx. doi.org/10.5935/0103-5053.20130141. open in new tab
  31. T.J. Davies, R.R. Moore, C.E. Banks, R.G. Compton, The cyclic voltammetric re- sponse of electrochemically heterogeneous surfaces, J. Electroanal. Chem. 574 (2004) 123-152, http://dx.doi.org/10.1016/j.jelechem.2004.07.031. open in new tab
  32. T.J. Davies, C.E. Banks, R.G. Compton, Voltammetry at spatially heterogeneous electrodes, J. Solid State Electrochem. 9 (2005) 797-808, http://dx.doi.org/10. 1007/s10008-005-0699-x. open in new tab
  33. K. Jüttner, D. Becker, Characterization of boron-doped diamond electrodes by electrochemical impedance spectroscopy, J. Appl. Electrochem. 37 (2006) 27-32, http://dx.doi.org/10.1007/s10800-006-9228-6. open in new tab
  34. B.A. Brookes, T.J. Davies, A.C. Fisher, R.G. Evans, S.J. Wilkins, K. Yunus, J.D. Wadhawan, R.G. Compton, Computational and experimental study of the cyclic voltammetry response of partially blocked electrodes. Part 1. Nonoverlapping, uniformly distributed blocking systems, J. Phys. Chem. B 107 (2003) 1616-1627, http://dx.doi.org/10.1021/jp021810v. open in new tab
  35. R. Samlenski, C. Haug, R. Brenn, C. Wild, R. Locher, P. Koidl, Characterization and lattice location of nitrogen and boron in homoepitaxial CVD diamond, Diam. Relat. Mater. 5 (1996) 947-951, http://dx.doi.org/10.1016/0925-9635(95)00471-8. open in new tab
  36. J.C. Richley, J.N. Harvey, M.N.R. Ashfold, Boron incorporation at a diamond sur- face: a QM/MM study of insertion and migration pathways during chemical vapor deposition, J. Phys. Chem. C 116 (2012) 18300-18307, http://dx.doi.org/10.1021/ jp305773d. open in new tab
  37. Y.V. Pleskov, Y.E. Evstefeeva, M.D. Krotova, V.P. Varnin, I.G. Teremetskaya, Synthetic semiconductor diamond electrodes: Electrochemical behaviour of homoepitaxial boron-doped films orientated as (111), (110), and (100) faces, J. Electroanal. Chem. 595 (2006) 168-174, http://dx.doi.org/10.1016/j.jelechem. 2006.07.010. open in new tab
  38. Y.V. Pleskov, Y.E. Evstefeeva, V.P. Varnin, I.G. Teremetskaya, Synthetic semi- conductor diamond electrodes: electrochemical characteristics of homoepitaxial boron-doped films grown at the (111), (110), and (100) faces of diamond crystals, Russ. J. Electrochem. 40 (2004) 886-892, http://dx.doi.org/10.1023/B:RUEL. 0000041354.70107.c8. open in new tab
  39. J. Ryl, L. Burczyk, R. Bogdanowicz, M. Sobaszek, K. Darowicki, Study on surface termination of boron-doped diamond electrodes under anodic polarization in H2SO4 by means of dynamic impedance technique, Carbon 96 (2016) 1093-1105, http:// dx.doi.org/10.1016/j.carbon.2015.10.064. open in new tab
  40. M. Sobaszek, L. Skowronski, R. Bogdanowicz, K. Siuzdak, A. Cirocka, P. Zieba, M. Gnyba, M. Naparty, L. Golunski, P. Plotka, Optical and electrical properties of ultrathin transparent nanocrystalline boron-doped diamond electrodes, Opt. Mater. 42 (2015) 24-34, http://dx.doi.org/10.1016/j.optmat.2014.12.014. open in new tab
  41. R. Bogdanowicz, M. Sawczak, P. Niedzialkowski, P. Zieba, B. Finke, J. Ryl, J. Karczewski, T. Ossowski, Novel functionalization of boron-doped diamond by microwave pulsed-plasma polymerized allylamine film, J. Phys. Chem. C 118 (2014) 8014-8025, http://dx.doi.org/10.1021/jp5003947. open in new tab
  42. K. Siuzdak, R. Bogdanowicz, M. Sawczak, M. Sobaszek, Enhanced capacitance of composite TiO 2 nanotube/boron-doped diamond electrodes studied by impedance spectroscopy, Nanoscale 7 (2015) 551-558, http://dx.doi.org/10.1039/ c4nr04417g. open in new tab
  43. R. Bogdanowicz, Characterization of optical and electrical properties of transparent conductive boron-doped diamond thin films grown on fused silica, Metrol. Meas. Syst. 21 (2014) 685-698, http://dx.doi.org/10.2478/mms-2014-0059. open in new tab
  44. Z.L. Wang, C. Lu, J.J. Li, C.Z. Gu, Effect of gas composition on the growth and electrical properties of boron-doped diamond films, Diam. Relat. Mater. 18 (2009) 132-135, http://dx.doi.org/10.1016/j.diamond.2008.10.040. open in new tab
  45. C.H. Goetling, F. Marken, A. Gutierrez-Sosa, R.G. Compton, J.S. Foord, Electrochemically induced surface modifications of boron-doped diamond elec- trodes: an X-ray photoelectron spectroscopy study, Diam. Relat. Mater. 9 (2000) 390-396, http://dx.doi.org/10.1016/S0925-9635(99)00267-8. open in new tab
  46. L. Codognoto, S.A.S. Machado, L.A. Avaca, Square wave voltammetry on boron- doped diamond electrodes for analytical determinations, Diam. Relat. Mater. 11 (2002) 1670-1675, http://dx.doi.org/10.1016/S0925-9635(02)00134-6. open in new tab
  47. L.S.C. Pingree, E.F. Martin, K.R. Shull, M.C. Hersam, Nanoscale impedance micro- scopy -a characterization tool for nanoelectronic devices and circuits, IEEE Trans. Nanotechnol. 4 (2005) 255, http://dx.doi.org/10.1109/TNANO.2004.837856. open in new tab
  48. K. Darowicki, A. Zieliński, K.J. Kurzydłowski, Application of dynamic impedance spectroscopy to atomic force microscopy, Sci. Technol. Adv. Mater. 9 (2008) 045006 http://dx.doi.org/10.1088/1468-6996/9/4/045006. open in new tab
  49. A. Zieliński, K. Darowicki, Implementation and validation of multisinusoidal, fast impedance measurements in atomic force microscope contact mode, Microsc. Microanal. 20 (2014) 974-981, http://dx.doi.org/10.1017/S1431927614000531. open in new tab
  50. A. Yacoot, L. Koenders, Aspects of scanning force microscope probes and their ef- fects on dimensional measurement, J. Phys. D. Appl. Phys. 41 (2008) 103001 open in new tab
  51. http://dx.doi.org/10.1088/0022-3727/41/10/103001. open in new tab
  52. D. Medeiros de Araujo, P. Canizares, C.A. Martinez-Huitle, M.A. Rodrigo, Electrochemical conversion/combustion of a model organic pollutant on BDD anode: role of sp 3 /sp 2 ratio, Electrochem. Commun. 47 (2014) 37-40, http://dx. doi.org/10.1016/j.elecom.2014.07.017. open in new tab
  53. M. Yang, J.S. Foord, X. Jiang, Diamond electrochemistry at the nanoscale: a review, Carbon 99 (2016) 90-110, http://dx.doi.org/10.1016/j.carbon.2016.11.061. open in new tab
  54. H. Li, T. Zhang, L. Li, X. Lu, B. Li, Z. Jin, G. Zou, Investigation on crystalline structure, boron distribution, and residual stresses in freestanding boron-doped CVD diamond films, J. Cryst. Growth 312 (2010) 1986-1991, http://dx.doi.org/10. 1016/j.jcrysgro.2010.03.020. open in new tab
  55. S. Zhao, K. Larsson, Theoretical study of the energetic stability and geometry of terminated and B-doped diamond (111) surfaces, J. Phys. Chem. C 118 (2014) 1944-1957, http://dx.doi.org/10.1021/jp409278x. open in new tab
  56. H. Girard, N. Simon, D. Ballutaud, A. Etcheberry, Correlation between flat-band potential position and oxygenated termination nature on boron-doped diamond electrodes, C. R. Chim. 11 (2008) 1010-1015, http://dx.doi.org/10.1016/j.crci. 2008.01.014. open in new tab
  57. M. Wang, E. Simon, G. Charrier, M. Bouttemy, A. Etcheberry, M. Li, R. Boukherroub, S. Szunerits, Distinction between surface hydroxyl and ether groups on boron-doped diamond electrodes using a chemical approach, Electrochem. Commun. 12 (2010) 351-354, http://dx.doi.org/10.1016/j.elecom. 2009.12.029. open in new tab
  58. P. Niedzialkowski, R. Bogdanowicz, P. Zieba, J. Wysocka, J. Ryl, M. Sobaszek, T. Ossowski, Melamine-modified boron-doped diamond towards enhanced detec- tion of adenine, guanine and caffeine, Electroanalysis 28 (2015) 211-221, http:// dx.doi.org/10.1002/elan.201500528. open in new tab
Verified by:
Gdańsk University of Technology

seen 139 times

Recommended for you

Meta Tags