High-Temperature Oxidation of Heavy Boron-Doped Diamond Electrodes: Microstructural and Electrochemical Performance Modification - Publication - Bridge of Knowledge

Search

High-Temperature Oxidation of Heavy Boron-Doped Diamond Electrodes: Microstructural and Electrochemical Performance Modification

Abstract

In this work, we reveal in detail the effects of high-temperature treatment in air at 600 °C on the microstructure as well as the physico-chemical and electrochemical properties of boron-doped diamond (BDD) electrodes. The thermal treatment of freshly grown BDD electrodes was applied, resulting in permanent structural modifications of surface depending on the exposure time. High temperature affects material corrosion, inducing crystal defects. The oxidized BDD surfaces were studied by means of cyclic voltammetry (CV) and scanning electrochemical microscopy (SECM), revealing a significant decrease in the electrode activity and local heterogeneity of areas owing to various standard rate constants. This effect was correlated with a resultant increase of surface resistance heterogeneity by scanning spreading resistance microscopy (SSRM). The X-ray photoelectron spectroscopy (XPS) confirmed the rate and heterogeneity of the oxidation process, revealing hydroxyl species to be dominant on the electrode surface. Morphological tests using scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed that prolonged durations of high-temperature treatment lead not only to surface oxidation but also to irreversible structural defects in the form of etch pits. Our results show that even subsequent electrode rehydrogenation in plasma is not sufficient to reverse this surface oxidation in terms of electrochemical and physico-chemical properties, and the nature of high-temperature corrosion of BDD electrodes should be considered irreversible.

Citations

  • 1 4

    CrossRef

  • 0

    Web of Science

  • 1 7

    Scopus

Cite as

Full text

download paper
downloaded 37 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Materials no. 13, pages 1 - 16,
ISSN: 1996-1944
Language:
English
Publication year:
2020
Bibliographic description:
Ryl J., Cieślik M., Zieliński A., Ficek M., Dec B., Darowicki K., Bogdanowicz R.: High-Temperature Oxidation of Heavy Boron-Doped Diamond Electrodes: Microstructural and Electrochemical Performance Modification// Materials -Vol. 13,iss. 4 (2020), s.1-16
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma13040964
Bibliography: test
  1. Sussmann, E.S. CVD Diamond for Electronic Devices and Sensors;
  2. Muzyka, K.; Sun, J.; Fereja, T.H.; Lan, Y.; Zhang, W.; Xu, G. Boron-doped diamond: Current progress and challenges in view of electroanalytical applications. Anal. Methods 2019, 11, 397-414. [CrossRef] open in new tab
  3. Yu, S.; Yang, N.; Jiang, X.; Zhang, W.; Liu, S. Conductive Diamond for Electrochemical Energy Applications. In Nanocarbon Electrochemistry; open in new tab
  4. Yang, N., Zhao, G., Foord, J., Eds.; John Wiley & Sons: New York, NY, USA, 2020; pp. 171-199. ISBN 978-1-119-46823-3.
  5. Nidheesh, P.V.; Divyapriya, G.; Oturan, N.; Trellu, C.; Oturan, M.A. Environmental Applications of Boron-Doped Diamond Electrodes: 1. Applications in Water and Wastewater Treatment. ChemElectroChem 2019, 6, 2124-2142. [CrossRef] open in new tab
  6. Yang, N. (Ed.) Novel Aspects of Diamond: From Growth to Applications; Springer International Publishing: Cham, Switzerland, 2019; Volume 121, ISBN 978-3-030-12468-7.
  7. Ashcheulov, P.; Taylor, A.; Mortet, V.; Poruba, A.; Le Formal, F.; Krýsová, H.; Klementová, M.; Hubík, P.; Kopeček, J.; Lorinčík, J.; et al. Nanocrystalline Boron-Doped Diamond as a Corrosion-Resistant Anode for Water Oxidation via Si Photoelectrodes. ACS Appl. Mater. Interfaces 2018, 10, 29552-29564. [CrossRef] open in new tab
  8. Schranck, A.; Doudrick, K. Effect of reactor configuration on the kinetics and nitrogen byproduct selectivity of urea electrolysis using a boron doped diamond electrode. Water Res. 2020, 168, 115130. [CrossRef] [PubMed] open in new tab
  9. Mei, R.; Zhu, C.; Wei, Q.; Ma, L.; Li, W.; Zhou, B.; Deng, Z.; Tong, Z.; Ouyang, G.; Jiang, C. The Dependence of Oxidation Parameters and Dyes' Molecular Structures on Microstructure of Boron-Doped Diamond in Electrochemical Oxidation Process of Dye Wastewater. J. Electrochem. Soc. 2018, 165, H324-H332. [CrossRef] open in new tab
  10. Zhang, Y.; Teo, K.H.; Palacios, T. Beyond Thermal Management: Incorporating p-Diamond Back-Barriers and Cap Layers Into AlGaN/GaN HEMTs. IEEE Trans. Electron. Devices 2016, 63, 2340-2345. [CrossRef] open in new tab
  11. Williams, G.; Calvo, J.A.; Faili, F.; Dodson, J.; Obeloer, T.; Twitchen, D.J. Thermal Conductivity of Electrically Conductive Highly Boron Doped Diamond and its Applications at High Frequencies. In Proceedings of the 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego, CA, USA, 29 May-1 June 2018; pp. 235-239. open in new tab
  12. Panizza, M.; Cerisola, G. Application of diamond electrodes to electrochemical processes. Electrochim. Acta 2005, 51, 191-199. [CrossRef] open in new tab
  13. Luong, J.H.T.; Male, K.B.; Glennon, J.D. Boron-doped diamond electrode: Synthesis, characterization, functionalization and analytical applications. Analyst 2009, 134, 1965. [CrossRef] open in new tab
  14. Herrmann, M.; Matthey, B.; Gestrich, T. Boron-doped diamond with improved oxidation resistance. Diam. Relat. Mater. 2019, 92, 47-52. [CrossRef] open in new tab
  15. Wang, J.; Swain, G.M. Dimensionally Stable Pt/Diamond Composite Electrodes in Concentrated H 3 PO 4 at High Temperature. Electrochem. Solid State Lett. 2002, 5, E4. [CrossRef] open in new tab
  16. Umezawa, H.; Nagase, M.; Kato, Y.; Shikata, S. High temperature application of diamond power device. Diam. Relat. Mater. 2012, 24, 201-205. [CrossRef] open in new tab
  17. Ueda, K.; Kawamoto, K.; Soumiya, T.; Asano, H. High-temperature characteristics of Ag and Ni/diamond Schottky diodes. Diam. Relat. Mater. 2013, 38, 41-44. [CrossRef] open in new tab
  18. Jiang, M.; Yu, H.; Li, X.; Lu, S.; Hu, X. Thermal oxidation induced high electrochemical activity of boron-doped nanocrystalline diamond electrodes. Electrochim. Acta 2017, 258, 61-70. [CrossRef] open in new tab
  19. Pehrsson, P.E.; Mercer, T.W.; Chaney, J.A. Thermal oxidation of the hydrogenated diamond (100) surface. Surf. Sci. 2002, 497, 13-28. [CrossRef] open in new tab
  20. Zhang, J.; Nakai, T.; Uno, M.; Nishiki, Y.; Sugimoto, W. Effect of the boron content on the steam activation of boron-doped diamond electrodes. Carbon 2013, 65, 206-213. [CrossRef] open in new tab
  21. Ryl, J.; Burczyk, L.; Bogdanowicz, R.; Sobaszek, M.; Darowicki, K. Study on surface termination of boron-doped diamond electrodes under anodic polarization in H 2 SO 4 by means of dynamic impedance technique. Carbon 2016, 96, 1093-1105. [CrossRef] open in new tab
  22. Martínez-Huitle, C.A.; Ferro, S.; Reyna, S.; Cerro-López, M.; De Battisti, A.; Quiroz, M.A. Electrochemical oxidation of oxalic acid in the presence of halides at boron doped diamond electrode. J. Braz. Chem. Soc. 2008, 19, 150-156. [CrossRef] open in new tab
  23. Hayashi, K.; Yamanaka, S.; Watanabe, H.; Sekiguchi, T.; Okushi, H.; Kajimura, K. Investigation of the effect of hydrogen on electrical and optical properties in chemical vapor deposited on homoepitaxial diamond films. J. Appl. Phys. 1997, 81, 744-753. [CrossRef] open in new tab
  24. Grot, S.A.; Gildenblat, G.S.; Hatfield, C.W.; Wronski, C.R.; Badzian, A.R.; Badzian, T.; Messier, R. The effect of surface treatment on the electrical properties of metal contacts to boron-doped homoepitaxial diamond film. IEEE Electron. Dev. Lett. 1990, 11, 100-102. [CrossRef] open in new tab
  25. Švorc, L'.; Rievaj, M.; Bustin, D. Green electrochemical sensor for environmental monitoring of pesticides: Determination of atrazine in river waters using a boron-doped diamond electrode. Sens. Actuators B Chem. 2013, 181, 294-300. [CrossRef] open in new tab
  26. Yagi, I.; Notsu, H.; Kondo, T.; Tryk, D.A.; Fujishima, A. Electrochemical selectivity for redox systems at oxygen-terminated diamond electrodes. J. Electroanal. Chem. 1999, 473, 173-178. [CrossRef] open in new tab
  27. Boukherroub, R.; Wallart, X.; Szunerits, S.; Marcus, B.; Bouvier, P.; Mermoux, M. Photochemical oxidation of hydrogenated boron-doped diamond surfaces. Electrochem. Commun. 2005, 7, 937-940. [CrossRef] open in new tab
  28. Geisler, M.; Hugel, T. Aging of Hydrogenated and Oxidized Diamond. Adv. Mater. 2010, 22, 398-402. [CrossRef] open in new tab
  29. Vanhove, E.; de Sanoit, J.; Arnault, J.C.; Saada, S.; Mer, C.; Mailley, P.; Bergonzo, P.; Nesladek, M. Stability of H-terminated BDD electrodes: An insight into the influence of the surface preparation. Phys. Status Solidi 2007, 204, 2931-2939. [CrossRef] open in new tab
  30. Zielinski, A.; Cieslik, M.; Sobaszek, M.; Bogdanowicz, R.; Darowicki, K.; Ryl, J. Multifrequency nanoscale impedance microscopy (m-NIM): A novel approach towards detection of selective and subtle modifications on the surface of polycrystalline boron-doped diamond electrodes. Ultramicroscopy 2019, 199, 34-45. [CrossRef] open in new tab
  31. Ghodbane, S.; Haensel, T.; Coffinier, Y.; Szunerits, S.; Steinmüller-Nethl, D.; Boukherroub, R.; Ahmed, S.I.-U.; Schaefer, J.A. HREELS Investigation of the Surfaces of Nanocrystalline Diamond Films Oxidized by Different Processes. Langmuir 2010, 26, 18798-18805. [CrossRef] open in new tab
  32. Girard, H.; Simon, N.; Ballutaud, D.; Herlem, M.; Etcheberry, A. Effect of anodic and cathodic treatments on the charge transfer of boron doped diamond electrodes. Diam. Relat. Mater. 2007, 16, 316-325. [CrossRef] open in new tab
  33. Ryl, J.; Bogdanowicz, R.; Slepski, P.; Sobaszek, M.; Darowicki, K. Dynamic Electrochemical Impedance Spectroscopy (DEIS) as a Tool for Analyzing Surface Oxidation Processes on Boron-Doped Diamond Electrodes. J. Electrochem. Soc. 2014, 161, H359-H364. [CrossRef] open in new tab
  34. Ferro, S.; Dal Colle, M.; De Battisti, A. Chemical surface characterization of electrochemically and thermally oxidized boron-doped diamond film electrodes. Carbon 2005, 43, 1191-1203. [CrossRef] open in new tab
  35. Shpilman, Z.; Gouzman, I.; Minton, T.K.; Shen, L.; Stacey, A.; Orwa, J.; Prawer, S.; Cowie, B.C.C.; Hoffman, A. A near edge X-ray absorption fine structure study of oxidized single crystal and polycrystalline diamond surfaces. Diam. Relat. Mater. 2014, 45, 20-27. [CrossRef] open in new tab
  36. Zolotukhin, A.; Kopylov, P.G.; Ismagilov, R.R.; Obraztsov, A.N. Thermal oxidation of CVD diamond. Diam. Relat. Mater. 2010, 19, 1007-1011. [CrossRef] open in new tab
  37. Show, Y.; Witek, M.A.; Sonthalia, P.; Swain, G.M. Characterization and Electrochemical Responsiveness of Boron-Doped Nanocrystalline Diamond Thin-Film Electrodes. Chem. Mater. 2003, 15, 879-888. [CrossRef] open in new tab
  38. Szunerits, S.; Boukherroub, R.; Downard, A.; Zhu, J.-J. (Eds.) Nanocarbon chemistry and interfaces. In Nanocarbons for Electroanalysis, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISBN 978-1-119-24395-3. open in new tab
  39. Ficek, M.; Bogdanowicz, R.; Ryl, J. Nanocrystalline CVD Diamond Coatings on Fused Silica Optical Fibres: Optical Properties Study. Acta Phys. Pol. A 2015, 127, 868-873. [CrossRef] open in new tab
  40. Zieliński, A.; Bogdanowicz, R.; Ryl, J.; Burczyk, L.; Darowicki, K. Local impedance imaging of boron-doped polycrystalline diamond thin films. Appl. Phys. Lett. 2014, 105, 131908. [CrossRef] open in new tab
  41. Ryl, J.; Burczyk, L.; Zielinski, A.; Ficek, M.; Franczak, A.; Bogdanowicz, R.; Darowicki, K. Heterogeneous oxidation of highly boron-doped diamond electrodes and its influence on the surface distribution of electrochemical activity. Electrochim. Acta 2019, 297, 1018-1027. [CrossRef] open in new tab
  42. Bogdanowicz, R.; Sawczak, M.; Niedzialkowski, P.; Zieba, P.; Finke, B.; Ryl, J.; Karczewski, J.; Ossowski, T. Novel Functionalization of Boron-Doped Diamond by Microwave Pulsed-Plasma Polymerized Allylamine Film. J. Phys. Chem. C 2014, 118, 8014-8025. [CrossRef] open in new tab
  43. Richard, W. Kinetic Study of Redox Probes on Glassy Carbon Electrode Functionalized by 4-nitrobenzene Diazonium. Int. J. Electrochem. Sci. 2019, 453-469. [CrossRef] open in new tab
  44. Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: New York, NY, USA, 2001; ISBN 978-0-471-04372-0.
  45. Bogdanowicz, R.; Sawczak, M.; Niedzialkowski, P.; Zieba, P.; Finke, B.; Ryl, J.; Ossowski, T. Direct amination of boron-doped diamond by plasma polymerized allylamine film: Direct amination of boron-doped diamond. Phys. Status Solidi 2014, 211, 2319-2327. [CrossRef] open in new tab
  46. Actis, P.; Denoyelle, A.; Boukherroub, R.; Szunerits, S. Influence of the surface termination on the electrochemical properties of boron-doped diamond (BDD) interfaces. Electrochem. Commun. 2008, 10, 402-406. [CrossRef] open in new tab
  47. Velasco, J.G. Determination of standard rate constants for electrochemical irreversible processes from linear sweep voltammograms. Electroanalysis 1997, 9, 880-882. [CrossRef] open in new tab
  48. Konopka, S.J.; McDuffie, B. Diffusion coefficients of ferri-and ferrocyanide ions in aqueous media, using twin-electrode thin-layer electrochemistry. Anal. Chem. 1970, 42, 1741-1746. [CrossRef] open in new tab
  49. Holt, K.B.; Bard, A.J.; Show, Y.; Swain, G.M. Scanning Electrochemical Microscopy and Conductive Probe Atomic Force Microscopy Studies of Hydrogen-Terminated Boron-Doped Diamond Electrodes with Different Doping Levels. J. Phys. Chem. B 2004, 108, 15117-15127. [CrossRef] open in new tab
  50. Kondo, T.; Kodama, Y.; Ikezoe, S.; Yajima, K.; Aikawa, T.; Yuasa, M. Porous boron-doped diamond electrodes fabricated via two-step thermal treatment. Carbon 2014, 77, 783-789. [CrossRef] open in new tab
  51. Ohashi, T.; Zhang, J.; Takasu, Y.; Sugimoto, W. Steam activation of boron doped diamond electrodes. Electrochim. Acta 2011, 56, 5599-5604. [CrossRef] open in new tab
  52. Ryl, J.; Zielinski, A.; Bogdanowicz, R.; Darowicki, K. Heterogeneous distribution of surface electrochemical activity in polycrystalline highly boron-doped diamond electrodes under deep anodic polarization. Electrochem. Commun. 2017, 83, 41-45. [CrossRef] open in new tab
  53. Siuzdak, K.; Bogdanowicz, R.; Sawczak, M.; Sobaszek, M. Enhanced capacitance of composite TiO 2 nanotube/boron-doped diamond electrodes studied by impedance spectroscopy. Nanoscale 2015, 7, 551-558. [CrossRef] open in new tab
  54. Denhoff, M.W. An accurate calculation of spreading resistance. J. Phys. D Appl. Phys. 2006, 39, 1761-1765. [CrossRef] open in new tab
  55. Dickens, L.E. Spreading Resistance as a Function of Frequency. IEEE Trans. Microw. Theory Technol. 1967, 15, 101-109. [CrossRef] open in new tab
  56. Chevallier, F.G.; Fietkau, N.; del Campo, J.; Mas, R.; Muñoz, F.X.; Jiang, L.; Jones, T.G.J.; Compton, R.G. Experimental cyclic voltammetry at partially blocked electrodes: Elevated cylindrical blocks. J. Electroanal. Chem. 2006, 596, 25-32. [CrossRef] open in new tab
  57. Davies, T.J.; Banks, C.E.; Compton, R.G. Voltammetry at spatially heterogeneous electrodes. J. Solid State Electrochem. 2005, 9, 797-808. [CrossRef] open in new tab
  58. Ivandini, T.A.; Watanabe, T.; Matsui, T.; Ootani, Y.; Iizuka, S.; Toyoshima, R.; Kodama, H.; Kondoh, H.; Tateyama, Y.; Einaga, Y. Influence of Surface Orientation on Electrochemical Properties of Boron-Doped Diamond. J. Phys. Chem. C 2019, 123, 5336-5344. [CrossRef] open in new tab
  59. Ghodbane, S.; Ballutaud, D.; Deneuville, A.; Baron, C. Influence of boron concentration on the XPS spectra of the (100) surface of homoepitaxial boron-doped diamond films. Phys. State Solid 2006, 203, 3147-3151. [CrossRef] open in new tab
  60. Ballutaud, D.; Simon, N.; Girard, H.; Rzepka, E.; Bouchet-Fabre, B. Photoelectron spectroscopy of hydrogen at the polycrystalline diamond surface. Diam. Relat. Mater. 2006, 15, 716-719. [CrossRef] open in new tab
  61. Girard, H.A.; Simon, N.; Ballutaud, D.; Etcheberry, A. Correlation between flat-band potential position and oxygenated termination nature on boron-doped diamond electrodes. Comptes Rendus Chim. 2008, 11, 1010-1015. [CrossRef] open in new tab
  62. Catalan, F.C.I.; Hayazawa, N.; Yokota, Y.; Wong, R.A.; Watanabe, T.; Einaga, Y.; Kim, Y. Facet-Dependent Temporal and Spatial Changes in Boron-Doped Diamond Film Electrodes due to Anodic Corrosion. J. Phys. Chem. C 2017, 121, 26742-26750. [CrossRef] open in new tab
  63. Pleskov, Y.V.; Evstefeeva, Y.E.; Krotova, M.D.; Varnin, V.P.; Teremetskaya, I.G. Synthetic semiconductor diamond electrodes: Electrochemical behaviour of homoepitaxial boron-doped films orientated as (111), (110), and (100) faces. J. Electroanal. Chem. 2006, 595, 168-174. [CrossRef] open in new tab
  64. Wolfer, M.; Biener, J.; El-dasher, B.S.; Biener, M.M.; Hamza, A.V.; Kriele, A.; Wild, C. Crystallographic anisotropy of growth and etch rates of CVD diamond. Diam. Relat. Mater. 2009, 18, 713-717. [CrossRef] 64. zevedo, A.F.; Braga, N.A.; Souza, F.A.; Matsushima, J.T.; Baldan, M.R.; Ferreira, N.G. The effect of surface treatment on oxidation of oxalic acid at nanocrystalline diamond films. Diam. Relat. Mater. 2010, 19, 462-465. [CrossRef] © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 144 times

Recommended for you

Meta Tags