Abstract
The independence number a(H) of a hypergraph H is the maximum cardinality of a set of vertices of H that does not contain an edge of H. Generalizing Shearer’s classical lower bound on the independence number of triangle-free graphs Shearer (1991), and considerably improving recent results of Li and Zang (2006) and Chishti et al. (2014), we show a new lower bound for a(H) for an r-uniform linear triangle-free hypergraph H with r>=2.
Citations
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Authors (4)
Cite as
Full text
download paper
downloaded 24 times
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.disc.2016.01.006
- License
- Copyright (2016 Elsevier B.V)
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
DISCRETE MATHEMATICS
no. 339,
edition 7,
pages 1878 - 1883,
ISSN: 0012-365X - Language:
- English
- Publication year:
- 2016
- Bibliographic description:
- Borowiecki P., Gentner M., Löwenstein C., Rautenbach D.: Independence in uniform linear triangle-free hypergraphs// DISCRETE MATHEMATICS. -Vol. 339, iss. 7 (2016), s.1878-1883
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.disc.2016.01.006
- Verified by:
- Gdańsk University of Technology
seen 111 times