Nanotubular oxide layers and hydroxyapatite coatings on porous titanium alloy Ti13Nb13Zr - Publication - Bridge of Knowledge

Search

Nanotubular oxide layers and hydroxyapatite coatings on porous titanium alloy Ti13Nb13Zr

Abstract

The surface condition of an implant has a significant impact on response occurring at the implant-biosystem border. The knowledge of physical-chemical and biological processes allows for targeted modification of biomaterials to induce a specified response of a tissue. The present research was aimed at development of technology composing of obtaining the nanotube oxide layers on a porous titanium alloy Ti13Nb13Zr, followed by the deposition of phosphate coating. The porous substrate (porosity about 50%) was prepared by a selective laser melting of the Ti13Nb13Zr powder with the SLM Realizer 100 equipment. The nanotubular oxide layers were fabricated by electrochemical oxidation in H3PO4 + 0.3% HF mixture for 30 min. at a constant voltage of 20V. The calcium phosphate coatings were formed by the electrochemically assisted deposition (ECAD). The presence of nanotubular oxide layers with their internal diameters ranging from 30 to 100 nm was observed by SEM (JEOL JSM-7600F). The nanotubes have dimensions that facilitated the deposition of hydroxyapatite

Citations

  • 7

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cite as

Full text

download paper
downloaded 67 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Published in:
Advances in Materials Science no. 18, pages 17 - 23,
ISSN: 1730-2439
Language:
English
Publication year:
2018
Bibliographic description:
Supernak-Marczewska M., Ossowska A., Strąkowska P., Zieliński A.: Nanotubular oxide layers and hydroxyapatite coatings on porous titanium alloy Ti13Nb13Zr// Advances in Materials Science. -Vol. 18., iss. 4(58) (2018), s.17-23
DOI:
Digital Object Identifier (open in new tab) 10.1515/adms-2017-0046
Bibliography: test
  1. Huang J., Zhang X., Yan W., Chen Z., Shuai X., Wang A., Wang Y.: Nanotubular topography enhances the bioactivity of titanium implants. Nanomed. Nanotech. Biol. and Med. 13 (2017) 1913-1923. open in new tab
  2. Liu X., Chu P.K., Ding C.: Surface modification of titanium, titanium alloys,and related materials for biomedical applications. Mater. Sci. Eng. R. 47 (2004) 49-121. open in new tab
  3. Sarraf M., Zalnezhad E., Bushroa A.R., Hamoud A.M.S., Rafieerad A.R., Nasiri-Tabrizi B.: Effect of microstructural evolution on wettability and tribological behavior of TiO 2 nanotubular arrays coated on Ti-6Al-4V. Ceram. Int. 41 (2015) 7952-7962. open in new tab
  4. Briggs E.P., Wapole A.R., Wilshaw P.R., Karlsson M., Palsgard E.: Formation of highly adherent nano-porous alumina on Ti-based substrates: A novel bone implant coating. J. Mater. Sc. Mat. Med. 15 (2004) 1021-1029. open in new tab
  5. Yang J., Zhang K., Que K., Hou S., Chen Z., Li Y., Wang Y., Song Y., Guam B., Zhang W., Zhu D., Li Ch., Wang D., Geng P.: Surface modification of titanium with hydroxyapatite layer induced by phase-transited lysozyme coating. Mater. Sci. Eng. C 92 (2018) 206-215. open in new tab
  6. Seramak T., Serbiński W., Zieliński A.: Formation of porous structure of the metallic materials used on bone implants. Solid State Phenom. 183 (2012) 155-162. open in new tab
  7. Jakubowicz J.: Formation of porous TiOx biomaterials in H 3 PO 4 electrolytes. Electrochem. Comm. 10 (2008) 735-739. open in new tab
  8. Long M., Rack H.J.: Titanium alloys in total joint replacement -a materials science perespective. Biomater. 19 (1998) 1621-1639 open in new tab
  9. Świeczko-Żurek B., Bartmański M.: Investigations of titanium implants covered with hydroxyapatite layer. Adv. Mater. Sci. 16 (2016) 78-86. open in new tab
  10. Ossowska A., Sobieszczyk S., Supernak M., Zielinski A.: Morphology and properties of nanotubular oxide layer on the Ti-13Nb-13Zr alloy. Surf. Coat. Techn. 258 (2014) 1239-1248. open in new tab
  11. Krupa D., Baszkiewicz J., Sobczak J.W., Bliński A., Barcz A.: Modyfing the properties of titanium surface with the aim of improving its bioactivity and corrosion resistance. J. Mater. Proc. Techn. 143-144 (2003) 158-163. open in new tab
  12. Vanzillotta P.S., Sader M.S., Bastos I.N., de Almeida Soares G.: Improvement on in vitro titanium bioactivity by three different surface treatments. Dental Mater. 22 (2006) 275-282. open in new tab
  13. Lewandowska M., Roguska A., Pisarek M., Polk B., Janik-Czachor M., Kurzydłowski K.J.: Morfology and chemical characterization on Ti surface modified for biomedical applications. Biomolec. Eng. 24 (2007) 438-444. open in new tab
  14. Zieliński A., Sobieszczyk S., Seramak T., Serbiński W., Świeczko-Żurek B., Ossowska A.: Biocompatibility and bioactivity of load-bearing metallic implants. Adv. Mater. Sci. 10 (2010) 21 open in new tab
  15. Jażdżewska M., Majkowska-Marzec B.: Hydroxyapatite deposition on the laser modified Ti13Nb13Zr alloy. Adv. Mater. Sci. 17 (2017) 5-13. open in new tab
  16. Crawford G., Chawla N., Das K., Bose S., Bandyopadhyay A.: Microstructure and deformation behavior of biocompatible TiO 2 nanotubes on titanium substrate. Acta Biomater. 3 (2007) 359- 367. open in new tab
  17. Prida V.M., Manova E., Vega V., Hernandez-Velez M., Aranda P., Pirota K.R., Vazquez M., Ruiz-Hitzky E.: Temperature influence on the anodic growth of self-aligned titanium dioxide nanotubes arrays. J. Magn. Magn. Mater. 316 (2007) 110-113. open in new tab
  18. Beranek R., Hildebrand H., Schmuki P.: Self-organized porous titanium prepared in H 2 SO 4 /HF electrolytes. Electrochem. Solid State Lett. 6 (2003) B12-B14. open in new tab
  19. Raja K.S., Misra M., Paramaguru K.: Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium. Electrochim. Acta 51 (2005) 154-165. open in new tab
  20. Mor G.K., Varghese O.K., Paulose M., Mukherjee N., Grimes C.A.: Fabrication of tapered conical-shaped titanium nanotubes. J. Mater. Res. 18 (2003) 2588-2593. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 208 times

Recommended for you

Meta Tags