New Analogues of Mycophenolic Acid - Publication - Bridge of Knowledge

Search

New Analogues of Mycophenolic Acid

Abstract

Mycophenolic acid (MPA) possesses antibacterial, antifungal, antiviral, immunosuppressive and anticancer properties. It is a non-competitive and reversible inhibitor of dehydrogenase inosine-5'-monophosphate (IMPDH). This compound belongs to the immunosuppressive drugs used for the prevention of both acute and chronic transplant rejection. Until now, two derivatives of MPA have been used clinically: mycophenolate mofetil (MMF, CellCept) and mycophenolate sodium (MPS, Myfortic). They cause, similar to MPA, although at lower degree, the side effects such as vomiting, abdominal pain, diarrhea, nausea, gastrointestinal, urogenital tract, blood or nervous system disorders. These drawbacks and glucuronidation of MPA in vivo limit the use of these compounds as pharmaceuticals. Therefore, research is still going on for more effective analogs that are less toxic to the organism and could improve the quality of life of patients. In this review article, the authors present the synthesis of novel derivatives of mycophenolic acid, together with their initial biological investigations.

Citations

  • 1 6

    CrossRef

  • 0

    Web of Science

  • 1 8

    Scopus

Cite as

Full text

download paper
downloaded 196 times
Publication version
Accepted or Published Version
License
Copyright (2017 Bentham Science Publishers)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
MINI-REVIEWS IN MEDICINAL CHEMISTRY no. 17, edition 9, pages 734 - 745,
ISSN: 1389-5575
Language:
English
Publication year:
2017
Bibliographic description:
Siebert A., Prejs M., Cholewiński G., Dzierzbicka K.: New Analogues of Mycophenolic Acid// MINI-REVIEWS IN MEDICINAL CHEMISTRY. -Vol. 17, iss. 9 (2017), s.734-745
DOI:
Digital Object Identifier (open in new tab) 10.2174/1389557516666161129160001
Bibliography: test
  1. Gołąb, J.; Jakóbisiak, M.; Lasek, W., Stokłosa, T. Immunologia, PWN: Warszawa, 2011.
  2. Sereno, J.; Parada, B.; Rodrigues-Santos, P.; Lopes, P.C.; Carvalho, E.; Vala, H.; Teixeira-Lemos, E.; Alves, R.; Figueiredo, A.; Mota, A.; Teixeira, F.; Reis, F. Serum and rental tissue markers of nephropathy in rats under immunosuppressive therapy: cyclosporine versus sirolimus. Transplant. Proc., 2013, 45, 1149-1156. open in new tab
  3. Rowiński, W.; Duplik, M. Zalecenia dotyczące leczenia immunosupresyjnego po przeszczepach narządów unaczynionych.; Fundacja Zjednoczeni dla Transplantacji: Warszawa, 2006.
  4. Satoh, S.; Tada, H.; Murakami, M.; Tsuchiya, N.; Inoue, T.; Togashi, H.; Matsuura, S.; Hayase, Y.; Suzuki, T.; Habuchi, T. The influence of mycophenolate mofetil versus azathioprine and mycophenolic acid pharmacokinetics on the incidence of acute rejection and infectious complications after renal transplantation. Transplant. Proc., 2005, 37, 1751-1753. open in new tab
  5. David, K.M.; Morris, J.A.; Steffen, B.J.; Chi-Burris, K.S.; Gotz, V.P.; Gordon, R.D. Mycophenolate mofetil vs. azathioprine is associated with decreased acute rejection, late acute rejection, and risk for cardiovascular death in renal transplant recipients with pretransplant diabetes. Clin. Transplant., 2005, 19, 279-285. open in new tab
  6. Pareja-Ciuro, F.; Diez-Canedo, J.S.; Gomez-Bravo, M.A.; Garcia- Gonzalez, I.; Tamayo-López, M.J.; Sousa-Martin, J.M.; Pascasio- Acevedo, J.M.; Porras-Lopez, M.F.; Gavilan-Carrasco, F.; Bernardos-Rodriguez, A. Efficacy and safety of mycophenolate mofetil as part of induction therapy in liver transplantation. Transplant. Proc., 2005, 37, 3926-3929. open in new tab
  7. Jimenez-Perez, M.; Lozano-Rey, J.M.; Marin-Garcia, D.; Olmendo Martin, R.; de la Cruz Lombardo, J.; Rodrigo Lopez, J.M. Efficacy and safety of monotherapy with mycophenolate mofetil in liver transplantation. Transplant. Proc., 2006, 38, 2480-2481. open in new tab
  8. Gosio, B.; Rivista d'Igiene e Sabita publica Ann., 1896, 7, 825. open in new tab
  9. Ardestani, F.; Fatemi, SS.; Yakhchali, B.; Hosseyni, SM.; Najafpour, G. Evaluation of Mycophenolic Acid Production by Penicillium bervicompactum MUCL 19011 in Batch and Continuous Submerged Cultures. Biochem. Engineer. J., 2010, 50, 99-103. open in new tab
  10. Iwaszkiewicz-Grześ, D.; Cholewiński, G.; Kot-Wasik, A.; Trzonkowski, P.; Dzierzbicka, K. Synthesis and biological activity of mycophenolic acid-amino acid derivatives. Eur. J. Med. Chem., 2013, 69, 863-871. open in new tab
  11. Clutterbuck, P.W.; Raistick, H. Studies in the biochemistry of micro-organisms: The molecular constitution of the metabolic products of Penicillium brevi-compactum Dierckx and releated species. II. Mycophenolic acid. J. Biochem., 1933, 27, 654-667.
  12. Covarrubias-Zúniga, A.; Gonzalez-Lucas, A.; Dominguez, M.M. Total synthesis of mycophenolic acid. Tetrahedron, 2003, 59, 1989-1994. open in new tab
  13. Kaplan, B. Mycophenolic acid trough level monitoring in solid organ transplant recipients treated with mycophenolate mofetil: Association with clinical outcomes. Curr. Med. Res. Opin., 2006, 22, 2355-2364. open in new tab
  14. Ghio, L.; Ferraresso, M.; Zacchelloc, G.; Murere, L.; Ginevrid, F.; Belingheria, M.; Peruzzie, L.; Zanonf, F.; Perfumod, F.; Berardinellib, L.; Tirelling, S.; Strologoh, LD.; Fontanai, I.; Valentei, U.; Carilloj, M.; Edefontia, A. Longitudinal evaluation of mycophenolic acid pharmacokinetics in pediatric kidney transplant recipients. The role of post-transplant clinical and therapeutic variables. Clin. Transplant., 2009, 23, 264-270. open in new tab
  15. Jablecki, J.; Kaczmarzyk, L.; Patrzałek, D.; Domanasiewicz, A.; Boratyńska, Z. First Polish forearm transplantation: report after 17 months. Transplant. Proc., 2009, 41, 549-553. open in new tab
  16. Rowiński, W.; Wałaszewski, J.; Pączek, L. Transplantologia kliniczna.; PZWL: Warszawa, 2004.
  17. Sintchak, M.D.; Nimmesgern, E. The structure of inosine 5'- monophosphate dehydrogenase and the disgn of novel inhibitors. Immunopharmocol., 2000, 47, 163-184. open in new tab
  18. Digits. J.A.; Hedstrom, L. Species-Specific Inhibition of Inosine 5'- Monophosphate Dehydrogenase by Mycophenolic Acid. Biochem., 1999, 38, 15388. open in new tab
  19. Premaud, A.; Rousseau, A.; Johnson, G.; Canivet, C.; Gandia, P.; Muscari, F.; Peron, J.M.; Rostain, L.; Marquet, P.; Kamar, N. Inhibition of T-cell activation and proliferation by myphenolic acid in patients awaiting liver transplantation: PK/PD relationships. Pharmacol. Res., 2011, 63, 432-438. open in new tab
  20. Hea, X.; Smeets, R.L.; Koenen, H.J.P.M.; Vink, P.M.; Wagenaars, J.; Boots, A.M.H.; Joosten, I. Mycophenolic Acid-Mediated Suppression of Human CD4+ T Cells: More Than Mere Guanine Nucleotide Deprivation. Am. J. Transplant., 2011, 11, 439-449. open in new tab
  21. von Vietinghoff, S.; Ouyang, H.; Ley, K.; Mycophenolic acid suppresses granulopoiesis inhibition of interleukin-17 production. Kidney International, 2010, 78, 79-88. open in new tab
  22. Cholewinski, G.; Malachowska-Ugarte M.; Dzierzbicka K. The chemistry of mycophenolic acid -synthesis and modifications towards desired biological activity. 2010, 17, 1926-1941. open in new tab
  23. Brookes, P. A.; Cordes, J.; White, J. P. A.; Barrett, A. G. M.; Total synthesis of mycophenolic acid by a palladium-catalyzed decarboxylative allylation and biomimetic aromatization sequence. Eur. J. Org. Chem., 2013, 32, 7313-7319. open in new tab
  24. Chen, Z.; Zheng, Z.; Huang, H.; Song, Y.; Zhang, X.; Ma, J.; Wang, B.; Zhang, C.; Ju, J. Penicacids A-C, three new mycophenolic acid derivatives and immunosuppressive activities from the marine-derived fungus Penicillium sp. SOF07. Bioorg. Med. Chem. Lett., 2012, 22, 3332-3335. open in new tab
  25. Qiong-Ying, F.; Xia, Y.; Zheng-Hui, L.; Yan, L.; Ji-Kai, L.; Tao, F.; Bao-Hua, Z.; Mycophenolic acid derivatives from cultures of the mushroom Laetiporus sulphureu. Chin. J. Nat. Med., 2014, 12, 685-688
  26. Malachowska-Ugarte, M.; Cholewiński, G.; Dzierzbicka, K..; Trzonkowski, P. Synthesis and biological activity of novel mycophenolic acid conjugates containing nitro-acridine/acridone derivatives. Eur. J. Med. Chem., 2012, 54, 197-201. open in new tab
  27. Cholewiński, G.; Iwaszkiewicz-Grześ, Dorota.; Trzonkowski, P.; Dzierzbicka, K. Synthesis and biological activity of ester derivatives of mycophenolic aci and acridines/acridones as potential immunosuppressive agents. J. Enzyme Inhib. Med. Chem., 2015, DOI:10.3109/14756366.2015.1077821. open in new tab
  28. Mitsuhashi, S.; Takenaka, J.; Iwamori, K.; Nakajima, N.; Ubukata, M.; Structure-activity relationships for inhibition of inosine monophosphate dehydrogenase and differentiation induction of K562 cells among the mycophenolic acid derivatives. Bioorg. Med. Chem., 2010, 18, 8106-8111 open in new tab
  29. Felczak, K.; Vince, R.; Pankiewicz, K.W. NAD-based inhibitors with anticancer potential. Bioorg. Med. Chem. Lett., 2014, 24, 332- 336. open in new tab
  30. Pankiewicz, K.W.; Lesiak-Watanabe, K.B.; Watanabe, K.A.; Patterson, S.E.; Jayaram, H.N.; Yalowitz, J.A.; Miller, M.D.; Seidman, M.; Majumdar, A.; Prehna, G.; Goldstein, B.M. Novel mycophenolic adeninę bis(phosphonate) analogues as potential differentiation agents against human leukemia. J. Med. Chem., 2002, 45, 703-712. open in new tab
  31. Felczak, K.; Chen, L.; Wilson, D.; Williams, J.; Vince, R.; Petrelli, R.; Jayaram, H.N.; Kusumanchi, P.; Kumar, M.; Pankiewicz, K.W. Cofactor-type inhibitors of inosine monophosphate dehydrogenase via modular approach: targeting the pyrophosphate binding sub- domain. Bioorg. Med. Chem., 2011, 19, 1594-1605. open in new tab
  32. Felczak, K.; Pankiewicz, K.W. Rehab of NAD(P)-Dependent Enzymes with NAD(P)-Based Inhibitors. Curr. Med. Chem., 2011, 18, 1891-1908. open in new tab
  33. Pankiewicz, K.W.; Felczak, K. From ribavirin to NAD analogues and back to ribavirin in search for anticancer agents. Heterocycl. Commun., 2015, 21, 249-257. open in new tab
  34. Pankiewicz, K.W.; Petrelli, L.; Singh, R.; Felczak, K. Nicotinamide Adenine Dinucleotide Based Therapeutics, Update. Curr. Med. Chem., 2015, 22, 3991-4028. open in new tab
  35. Chen, L., Wilson, D.J.; Labello, N.P.; Jayaram, H.H.; Pankiewicz, K.W.; Mycophenolic acid analogs with a modified metabolic profile. Bioorg. Med. Chem., 2008, 16, 9340-9345. open in new tab
  36. Wu, H.; Pagadala, J.; Yates, C. R.; Miller, D.; Mahato, R. I. Synthesis and characterization of an anti-apoptotic immunosuppressive compound for improving the outcome of islet transplantation. Bioconjugate Chem., 2013, 24, 2036-2044. open in new tab
  37. Peng, Y.; Dong Y.; Mahato R.I. Synthesis and Characterization of a Novel Mycophenolic Acid−Quinic Acid Conjugate Serving as Immunosuppressant with Decreased Toxicity. Mol. Pharmaceutics., 2015, 12, 4445−4453. open in new tab
  38. Sunohara, K.; Mitsuhashi, S.; Shigetomi, K.; Nakata, M. Discovery of N-(2,3,5-triazoyl)mycophenolic amide and mycophenolic epoxyketone as novel inhibitors of human IMPDH. Bioorg. Med. Chem. Lett., 2013, 23, 5140-5144. open in new tab
  39. Chen, L.; Wilson, D.; Jayaram, H.N.; Pankiewicz, K.W. Dual inhibitors of IMP-dehydrogenase and histone deacetylases for cancer treatment. J. Med. Chem., 2007, 50, 6685-6691. open in new tab
  40. Wang, X.; Lin, Y.; Zeng, Y.; Sun, X.; Gong, T.; Zhang, Z.; Effects of mycophenolic acid-glucosamine conjugates on the base of kidney targeted drug delivery. Inter. J. Pharma., 2013, 456, 223-234. open in new tab
  41. Yang, N.; Wang, Q.; Wang, W.; Wang, J.; Li, F.; Tan, S.; Cheng, M. The synthesis and in vitro immunosuppressive evaluation of novel isobenzofuran derivatives. Bioorg. Med. Chem. Lett., 2012, 22, 53-56. open in new tab
  42. Guazelli, L.; D'Andrea, F.; Giorgelli, F.; Catelani, G.; Panattoni, A.; Luvisi, A. Synthesis of PAMAM Dendrimers Loaded with Mycophenolic Acid to Be Studied as New Potential Immunosuppressants. J. Chem., 2015, http://dx.doi.org/10.1155/ 2015/263072. open in new tab
  43. Callen, J.P.; Goldsmith, L.A.; Katz, S.I.; Gilchrest, B.A.; Paller, A.S.; Leffell, D.J.; Wolff, K. Immunosuppressive and immunomodulatory drugs, Fitzpatrick's Dermatology in General Medicine, 8th ed.; McGraw-Hill, 2012, 223, 2807-2808.
  44. Nguyen, V.H.; Zeiser, R.; Negrin, R.S. Role of naturally arising regulatory T cells in hematopoietic cell transplantation, Biol. Blood Marrow Transplant., 2006, 12, 995-1009. open in new tab
  45. Hackstein, H.; Thomson, A.G. Dendritic cells: emerging pharmacological targets of immunosuppressive drugs, Nat. Rev. Immunol., 2004, 4, 24-34. open in new tab
  46. Jung, K. E.; Lee, Y. J.; Ryu, Y.H.; Kim, J. E.; Kim, H. S.; Kim, B. J.; Kang, H.; Park, Y. M.; Effects of topically applied rapamycin and mycophenolic acid od TNCB-induced atopic dermatitis-like lesions in NC/Nga mice. Inter. Immunopharm., 2015, 26, 432-438. open in new tab
  47. Cheng, K-W.; Cheng, S-Ch.; Chen, W-Y; open in new tab
  48. Lin, M-H.; Chuang, S-J.; Cheng, I-H.; Sun, Ch-Y.; Chou, Ch-Y.; Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus. Antiviral Research., 2015, 115, 9-16.
Verified by:
Gdańsk University of Technology

seen 139 times

Recommended for you

Meta Tags