New generation of analytical tests based on the assessment of enzymatic and nuclear receptor activity changes induced by environmental pollutants - Publication - Bridge of Knowledge

Search

New generation of analytical tests based on the assessment of enzymatic and nuclear receptor activity changes induced by environmental pollutants

Abstract

Analytical methods show great potential in biological tests. The analysis of biological response that results from environmental pollutant exposure allows: (i) prediction of the risk of toxic effects and (ii) provision of the background for the development of markers of the toxicants presence. Bioanalytical tests based on changes in enzymatic activity and nuclear receptor action provide extremely high specificity and sensitivity. We describe the application of xenobiotic metabolizing enzymes (i.e., cytochromes P450, glutathione S-transferases, and sulfotransferases), enzymes involved in natural metabolic pathways (i.e., acyltransferases, and N-acetyltransferases), and several other enzymes. We also describe the tests employing changes in nuclear receptor activity, including aryl hydrocarbon receptor, pregnane X receptor, constitutive androstane receptor, and retinoid X receptor, as promising tests allowing the prediction of dangerous effects of environmental pollutants a long time after exposure.

Citations

  • 5

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Cite as

Full text

download paper
downloaded 49 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
TRAC-TRENDS IN ANALYTICAL CHEMISTRY no. 74, pages 109 - 119,
ISSN: 0165-9936
Publication year:
2015
Bibliographic description:
Bejrowska A., Kudłak B., Owczarek K., Szczepańska N., Namieśnik J., Mazerska Z.: New generation of analytical tests based on the assessment of enzymatic and nuclear receptor activity changes induced by environmental pollutants// TRAC-TRENDS IN ANALYTICAL CHEMISTRY. -Vol. 74, (2015), s.109-119
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.trac.2015.05.009
Bibliography: test
  1. M. Butler, Animal Cell Culture and Technology, Garland Science, New York (USA, 2004. open in new tab
  2. L. Bitensky, The reversible activation of lysosomes in cells and the effects of pathological conditions, in: A.U.S. de Renk, M.F. Cameron (Editors), Lysosomes, Churchill, London, 1963, pp. 362-375. open in new tab
  3. J.P. Sumpter, A.C. Johnson, Lessons from endocrine disruption and their application to other issues concerning trace organics in the aquatic environment, Environ. Sci. Technol. 39 (2005) 4321-4332. open in new tab
  4. M.D. Waters, T.O. Vaughan, D.J. Abernethy, H.R. Garland, E.E. Cox, D.L. Coffin, Toxicity of platinum (IV) salts for cells of pulmonary origin, Environ. Health Perspect. 12 (1975) 45-56. open in new tab
  5. J.G.R. Elferink, Chlorpromazine inhibits phagocytosis and exocytosis in rabbit polymorphonuclear leukocytes, Biochem. Pharmacol. 28 (1979) 965-968. open in new tab
  6. D. Acosta, D. Anuforo, R.V. Smith, The use of primary liver cell culture to study hepatotoxic agents, Toxicol. Appl. Pharmacol. 45 (1978) 262-263. open in new tab
  7. M. Yoshida, M. Onaka, T. Fujita, M. Nakajima, Inhibitory effects of pesticides on growth and respiration of cultured cells, Pestic. Biochem. Physiol. 10 (1979) 313-321. open in new tab
  8. V. Bianchi, Nucleotide pool unbalance induced in cultured cells by treatments with different chemicals, Toxicology 25 (1982) 13-18. open in new tab
  9. A.M. Soto, C. Sonnenschein, K.L. Chung, M.F. Fernandez, N. Olea, F. Olea Serrano, The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants, Environ. Health Perspect. 103 (1995) 113-122. open in new tab
  10. S.A. Heppell, N.D. Denslow, Universal assay of vitellogenin as a biomarker for environmental estrogens, Environ. Health Perspect. 103 (1995) 9-15. open in new tab
  11. S.F. Arnold, M.K. Robinson, A.C. Notides, L.J. Guillette, J.A. McLachlan, A yeast estrogen screen for examining the relative exposure of cells to natural and xenoestrogen, Environ. Health Perspect. 104 (1996) 544-548. open in new tab
  12. R.M. Mann, J.R. Bidwell, Application of the FETAX protocol to assess the developmental toxicity of nonylphenol ethoxylate to Xenopus laevis and two Australian frogs, Aquat. Toxicol. 51 (2000) 19-29. open in new tab
  13. S. Nakajin, S. Shinoda, S. Ohno, H. Nakazawa, T. Makino, Effect of phthalate esters and alkylphenols on steroidogenesis in human adrenocortical H295R cells, Environ. Toxicol. Pharmacol. 10 (2001) 103-110. open in new tab
  14. M. Jönsson, A gill Filament EROD Assay, Development and Application in Environmental Monitoring, Uppsala Universitet, 2003, pp. 7-40. open in new tab
  15. M. Jönsson, A. Abrahamson, B. Brunström, I. Brandt, K. Ingebrigsten, E.H. Jørgensen, EROD activity in gill filaments of anadromous and marine fish as a biomarker of dioxin-like pollutants, Comp. Biochem. Physiol. C Toxicol. Pharmacol. 136 (2003) 235-243. open in new tab
  16. P.F. Kennel, C.T. Pallen, R.G. Bars, Evaluation of the rodent Hershberger assay using three reference endocrine disrupters (androgen and antiandrogens), Reprod. Toxicol. 18 (2004) 63-73. open in new tab
  17. E. Sonneveld, H.J. Jansen, J. Riteco, A. Brouwer, B. van der Burg, Development of androgen-and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays, Toxicol. Sci. 83 (2005) 136-148. open in new tab
  18. C.J. Houtman, P.E.G. Leonards, W. Kapiteijn, J.F. Bakker, A. Brouwer, M.H. Lamoree, et al., Sample preparation method for the ER-CALUX bioassay screening of (xeno-)estrogenic activity in sediment extracts, Sci. Total Environ. 386 (2007) 134-144. open in new tab
  19. E.C. Bonefeld-Jorgensen, H.T. Grünfeld, I.M. Gjermandsen, Effect of pesticides on estrogen receptor transactivation in vitro: a comparison of stable transfected MVLN and transient transfected MCF-7 cells, Mol. Cell. Endocrinol. 244 (2005) 20-30. open in new tab
  20. S. Anchersen, Effects of Marine Mixtures of Persistent Organic Pollutants on Steroidogenesis on LH-Stimulated Primary Leydig Cells, Norwegian School of Veterinary Science and Oslo University College, 2010, pp. 11-37.
  21. A. Keller, Drosophila melanogaster's history as a human commensal, Curr. Biol. 17 (2007) R77-R81; (b) J.B. Sumner, The isolation and crystallization of the enzyme Urease. Preliminary Paper, J. Biol. Chem. 69 (1926) 435-441.
  22. I.L. Hayglick, P.S. Moorhead, The serial Cultivation of human diploid cell strains, Exp. Cell Res. 25 (1961) 585-621. open in new tab
  23. E. Engvall, P. Perlman, Enzyme-linked Immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G, Immunochemistry 8 (1971) 871-874. open in new tab
  24. I. Hayashi, G.H. Sato, Replacement of serum by hormones permits growth of cells in a defined medium, Nature 259 (1976) 132-134. open in new tab
  25. J.M.S. Barlett, D. Stirling, A short history of the Polymerase Chain Reaction, PCR Protocols, Methods Mol. Biol. 226 (2003) 3-6. open in new tab
  26. B. Kudłak, N. Szczepań ska, K. Owczarek, Z. Mazerska, J. Namieśnik, Revision of biological methods serving determination of EDC presence and their endocrine potential, Crit. Rev. Anal. Chem. 45 (2015) 191-200, doi:10.1080/ 10408347.2014.904731. open in new tab
  27. A. Wiś niewska, Z. Mazerska, Izoenzymy cytochromu P450 w metabolizmie związków endo-i egzogennych, Postepy Biochem. 3 (2009) 259-271 (in Polish).
  28. A. Stefanski, M. Mevissen, A.M. Möller, K. Kuehni-Boghenbor, A. Schmitz, Induction of cytochrome P450 enzymes in primary equine hepatocyte culture, Toxicol. In Vitro 27 (2013) 2023-2030. open in new tab
  29. U.M. Zanger, M. Schwab, Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation, Pharmacol. Ther. 138 (2013) 103-141. open in new tab
  30. J.P. David, S. Boyer, A. Mesneau, A. Ball, H. Ranson, C. Dauphin-Villemant, Involvement of cytochrome P450 monooxygenases in the response of mosquito larvae to dietary plant xenobiotics, Insect Biochem. Mol. Biol. 36 (2006) 410-420. open in new tab
  31. J. Hellou, N.W. Ross, T.W. Moon, Glutathione, glutathione S-transferase and glutathione conjugates, complementary markers of oxidative stress in aquatic biota, Environ. Sci. Pollut. Res. Int. 19 (2012) 2007-2013. open in new tab
  32. A. Karpeta, K. Warzecha, J. Jerzak, A. Ptak, E.L. Gregoraszczuk, Activation of the enzymes of phase I (CYP2B1/2) and phase II (SULT1A and COMT) metabolism by 2,2′,4,4′-tetrabromodiphenyl ether (BDE47) in the pig ovary, Reprod. Toxicol. 34 (2012) 436-442. open in new tab
  33. C.M. Butt, H.M. Stapleton, Inhibition of thyroid hormone sulfotransferase activity by brominated flame retardants and halogenated phenolics, Chem. Res. Toxicol. 26 (2013) 1692-1702. open in new tab
  34. L. Courtney, C.L. McGinnis, J.F. Crivello, Elucidating the mechanism of action of tributyltin (TBT) in zebrafish, Aquat. Toxicol. 103 (2011) 25-31.
  35. G. Janer, R.M. Sternberg, G.A. LeBlanc, C. Porte, Testosterone conjugating activities in invertebrates: are they targets for endocrine disruptors?, Aquat. Toxicol. 71 (2005) 273-282. open in new tab
  36. L. Wakefield, L. Cornish, H. Long, W.J. Griffiths, E. Sim, Deletion of a xenobiotic metabolizing gene in mice affects folate metabolism, Biochem. Biophys. Res. Commun. 364 (2007) 556-560. open in new tab
  37. J. Dairou, E. Petit, N. Ragunathan, A. Baeza-Squiban, F. Marano, J.M. Dupret, et al., Arylamine N-acetyltransferase activity in bronchial epithelial cells and its inhibition by cellular oxidants, Toxicol. Appl. Pharmacol. 236 (2009) 366- 371. open in new tab
  38. N. Ragunathan, F. Busi, B. Pluvinage, E. Sanfins, J.M. Dupret, F. Rodrigues-Lima, et al., The human xenobiotic-metabolizing enzyme arylamine N-acetyltransferase 1 (NAT1) is irreversibly inhibited by inorganic (Hg2+) and organic mercury (CH3Hg+): mechanism and kinetics, FEBS Lett. 584 (2010) 3366-3369. open in new tab
  39. J. Chen, B.K. Lipska, N. Halim, Q.D. Ma, M. Matsumoto, S. Melhem, et al., Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain, Am. J. Hum. Genet. 75 (2004) 807-821. open in new tab
  40. B.T. Zhu, P. Wang, M. Nagai, Y. Wen, H.-W. Bai, Inhibition of human catechol-O- methyltransferase (COMT)-mediated O-methylation of catechol estrogens by major polyphenolic components present in coffee, J. Steroid Biochem. Mol. Biol. 113 (2009) 65-74. open in new tab
  41. X. Fang, W. Dong, C. Thornton, K.L. Willett, Benzo[a]pyrene effects on glycine N-methyltransferase mRNA expression and enzyme activity in Fundulus heteroclitus embryos, Aquat. Toxicol. 98 (2010) 130-138. open in new tab
  42. X. Fang, C. Thornton, B.E. Scheffler, K.L. Willett, Benzo[a]pyrene decreases global and gene specific DNA methylation during zebrafish development, Environ. Toxicol. Pharmacol. 36 (2013) 40-50. open in new tab
  43. S.L.E. Hallgren, M. Linderoth, K.H. Olsen, Inhibition of cytochrome p450 brain aromatase reduces two male specific sexual behaviours in the male Endler guppy (Poecilia reticulata), Gen. Comp. Endocrinol. 147 (2006) 323-328. open in new tab
  44. D.G.S.M. Cavalcante, N.D.G. da Silva, J.C. Marcarini, M.S. Mantovani, M.A. Marin-Morales, C.B.R. Martinez, Cytotoxic, biochemical and genotoxic effects of biodiesel produced by different routes on ZFL cell line, Toxicol. In Vitro 28 (2014) 1117-1125. open in new tab
  45. W. Zhang, K. Liu, L. Chen, L. Chen, K. Lin, R. Fu, A multi-biomarker risk assessment of the impact of brominated flame retardant-decabromodiphenyl ether (BDE209) on the antioxidant system of earthworm Eisenia fetida, Environ. Toxicol. Pharmacol. 38 (2014) 297-304. open in new tab
  46. E. Giarratano, M.N. Gil, G. Malanga, Biomarkers of environmental stress in gills of ribbed mussel Aulacomya atra atra (Nuevo Gulf, Northern Patagonia), Ecotoxicol. Environ. Saf. 107 (2014) 111-119. open in new tab
  47. D. Andreescu, S. Andreescu, O.A. Sadik, New materials for biosoensors, biochips and molecular bioelectronics, in: L. Gorton (Editor), Biosensors and Modern Biospecific Analytical Techniques, Elsevier, Amsterdam, 2005, pp. 285-327. open in new tab
  48. A.A. Enayati, J.G. Vontas, G.J. Small, L. McCarroll, J. Hemingway, Quantification of pyrethroid insecticides from treated bednets using a mosquito recombinant glutathione S-transferase, Med. Vet. Entomol. 15 (2001) 58-63. open in new tab
  49. K.-W. Lee, S. Raisuddin, J.-S. Rhee, D.-S. Hwang, I.T. Yu, Y.-M. Lee, et al., Expression of glutathione S-transferase (GST) genes in the marine copepod Tigriopus japonicus exposed to trace metals, Aquat. Toxicol. 89 (2008) 158-166. open in new tab
  50. S. Zheng, X. Qiu, B. Chen, X. Yu, K. Lin, M. Bian, et al., Toxicity evaluation of benzo[a]pyrene on the polychaete Perinereis nuntia using subtractive cDNA libraries, Aquat. Toxicol. 105 (2011) 279-291. open in new tab
  51. P. Martinez-Paz, M. Morales, J.L. Martinez-Guitarte, G. Morcillo, Characterisation of a cytochrome P450 gene (CYP4G) and modulation under different exposures to xenobiotics (tributylin, nonylphenol, bisphenol A) in Chironomus riparius aquatic larvae, Comp. Biochem. Physiol. C Toxicol. Pharmacol. 155 (2012) 333-343. open in new tab
  52. P. Murugesan, P. Kanagaraj, S. Yuvaraj, K. Balasubramanian, M.M. Aruldhas, J. Arunakaran, The inhibitory effects of polychlorinated biphenyl Aroclor 1254 on Leydig cell LH receptors, steroidogenic enzymes and antioxidant enzymes in adult rats, Reprod. Toxicol. 20 (2005) 117-126. open in new tab
  53. A.S. Mortensen, A. Arukwe, Modulation of xenobiotic biotransformation system and hormonal responses in Atlantic salmon (Salmo salar) after exposure to tributyltin (TBT), Comp. Biochem. Physiol. C Toxicol. Pharmacol. 145 (2007) 431-441. open in new tab
  54. K.F. Rewitz, C. Kjellerup, A. Jorgensen, C. Petersen, O. Andersen, Identification of two Nereis virens (Annelida: Polychaeta) cytochromes P450 and induction by xenobiotics, Comp. Biochem. Physiol. C Toxicol. Pharmacol. 138 (2004) 89-96. open in new tab
  55. C. Frizzell, S. Verhaegen, E. Ropstad, C.T. Elliott, L. Connolly, Endocrine disrupting effects of ochratoxin A at the level of nuclear receptor activation and steroidogenesis, Toxicol. Lett. 217 (2013) 243-250. open in new tab
  56. J. Li, M. Ma, Z. Wang, A two-hybrid yeast assay to quantify the effects of xenobiotics on retinoid X receptor-mediated gene expression, Toxicol. Lett. 176 (2008) 198-206. open in new tab
  57. S. Zheng, B. Chen, X. Qiu, K. Lin, X. Yu, Three novel cytochrome P450 genes identified in the marine polychaete Perinereis nuntia and their transcriptional response to xenobiotics, Aquat. Toxicol. 134-135 (2013) 11-22. open in new tab
  58. C.A. Ihunnah, M. Jiang, W. Xie, Nuclear receptor PXR, transcriptional circuits and metabolic relevance, Biochim. Biophys. Acta 1812 (2011) 956-963. open in new tab
  59. S. Germer, A.H. Piersma, L. van der Ven, A. Kamyschnikow, Y. Fery, H.-J. Schmitz, et al., Subacute effects of the brominated flame retardants hexabromocyclododecane and tetrabromobisphenol A on hepatic cytochrome P450 levels in rats, Toxicology 218 (2006) 229-236. open in new tab
  60. I. Fernandez, A. Santos, M.L. Cancela, V. Laize, P.J. Gavaia, Warfarin, a potential pollutant in aquatic environment acting through Pxr signaling pathway and γ-glutamyl carboxylation of vitamin K-dependent proteins, Environ. Pollut. 194 (2014) 86-95. open in new tab
  61. B. Wassmur, J. Grans, P. Kling, M.C. Celander, Interactions of pharmaceuticals and other xenobiotics on hepatic pregnane X receptor and cytochrome P450 3A signaling pathway in rainbow trout (Oncorhynchus mykiss), Aquat. Toxicol. 100 (2010) 91-100. open in new tab
  62. A. Szanto, V. Narkar, Q. Shen, I.P. Uray, P.J.A. Davies, L. Nagy, Retinoid X receptorsLX-ploring their (patho)physiological functions, Cell Death Differ. 11 (2004) 126-143. open in new tab
  63. A. Di Massi, L. Leboffe, E. DeMarinis, F. Pagano, L. Cicconi, C. Rochette_egly, et al., Retinoic acid receptors: from molecular mechanisms to cancer therapy, Mol. Aspects Med. (2015) doi:10.1016/j.mam.2014.12.003. open in new tab
  64. C.-H. Chen, P.-H. Chou, M. Kawanishi, T. Yagi, Occurrence of xenobiotic ligands for retinoid X receptors and thyroid hormone receptors in the aquatic environment of Taiwan, Mar. Pollut. Bull. 85 (2014) 613-618. open in new tab
  65. M.A. Valasek, J.J. Repa, The power of real-time PCR, Adv. Physiol. Educ. 29 (2005) 151-159. open in new tab
  66. T. Horiguchi, H. Shiraishi, M. Shimizu, M. Morita, Imposex and organotin compounds in Thais clavigera and T. bronni in Japan, J. Mar. Biol. Ass. U.K. 74 (1994) 651-669. open in new tab
  67. A. Ambesajir, A. Kaushik, J.J. Kaushik, S.T. Petros, RNA interference: a futuristic tool and its therapeutic applications, Saudi J. Biol. Sci. 19 (2012) 395-403. open in new tab
  68. M. Gahrs, R. Roos, P.L. Anderssona, D. Schrenk, Role of the nuclear xenobiotic receptors CAR and PXR in induction of cytochromes P450 by non-dioxinlike polychlorinated biphenyls in cultured rat hepatocytes, Toxicol. Appl. Pharmacol. 272 (2013) 77-85. open in new tab
  69. C.S. Martin, P.A. Wight, A. Dobretsova, I. Bronstein, Dual luminescence-based reporter gene assay for luciferase and b-galactosidase, Biotechniques 21 (1996) 520-524. open in new tab
  70. I. Richter, A.E. Fidler, Detection of marine microalgal biotoxins using bioassays based on functional expression of tunicate xenobiotic receptors in yeast, Toxicon 95 (2015) 13-22. open in new tab
  71. J. Damasio, R. Tauler, E. Teixido, M. Rieradevall, N. Prat, M.C. Riva, et al., Combined use of Daphnia magna in situ bioassays, biomarkers and biological indices to diagnose and identify environmental pressures on invertebrate communities in two Mediterranean urbanized and industrialized rivers (NE Spain), Aquat. Toxicol. 87 (2008) 310-320. open in new tab
  72. M. Wieczerzak, B. Kudłak, J. Namieśnik, Environmentally oriented models and methods for the evaluation of the drug×drug interaction's effects, Crit. Rev. Anal. Chem. 45 (2015) 131-155. open in new tab
Verified by:
Gdańsk University of Technology

seen 108 times

Recommended for you

Meta Tags