On the correspondence between two- and three-dimensional Eshelby tensors - Publication - Bridge of Knowledge

Search

On the correspondence between two- and three-dimensional Eshelby tensors

Abstract

We consider both three-dimensional (3D) and two-dimensional (2D) Eshelby tensors known also as energy–momentum tensors or chemical potential tensors, which are introduced within the nonlinear elasticity and the resultant nonlinear shell theory, respectively. We demonstrate that 2D Eshelby tensor is introduced earlier directly using 2D constitutive equations of nonlinear shells and can be derived also using the throughthe-thickness procedure applied to a 3D shell-like body.

Citations

  • 8

    CrossRef

  • 0

    Web of Science

  • 8

    Scopus

Cite as

Full text

download paper
downloaded 107 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
CONTINUUM MECHANICS AND THERMODYNAMICS no. 31, pages 1615 - 1625,
ISSN: 0935-1175
Language:
English
Publication year:
2019
Bibliographic description:
Eremeev V., Konopińska-Zmysłowska V.: On the correspondence between two- and three-dimensional Eshelby tensors// CONTINUUM MECHANICS AND THERMODYNAMICS. -Vol. 31, (2019), s.1615-1625
DOI:
Digital Object Identifier (open in new tab) 10.1007/s00161-019-00754-6
Bibliography: test
  1. Abeyaratne, R., Knowles, J.K.: Kinetic relations and the propagation of phase boundaries in solids. Arch. Ration. Mech. Anal. 114(2), 119-154 (1991) open in new tab
  2. Abeyaratne, R., Knowles, J.K.: Evolution of Phase Transitions. A Continuum Theory. Cambridge University Press, Cambridge (2006) open in new tab
  3. Agrawal, A., Steigmann, D.J.: Coexistent fluid-phase equilibria in biomembranes with bending elasticity. J. Elast. 93(1), 63-80 (2008) open in new tab
  4. Altenbach, H., Eremeyev, V.: Thin-walled structural elements: classification, classical and advanced theories, new applica- tions. In: Altenbach, H., Eremeyev, V. (eds.) Shell-like Structures: Advanced Theories and Applications, pp. 1-62. Springer, Cham (2017) open in new tab
  5. Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73-92 (2010) open in new tab
  6. Andreaus, U., Spagnuolo, M., Lekszycki, T., Eugster, S.R.: A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams. Contin. Mech. Thermodyn. 30(5), 1-21 (2018) open in new tab
  7. Barchiesi, E., Ganzosch, G., Liebold, C., Placidi, L., Grygoruk, R., Müller, W.H.: Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation. Contin. Mech. Thermodyn., pp. 1-13 (2018) open in new tab
  8. Berdichevsky, V.L.: Variational Principles of Continuum Mechanics. I. Fundamentals. Springer, Heidelberg (2009) open in new tab
  9. Berezovski, A., Engelbrecht, J., Maugin, G.A.: Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific, New Jersey (2008) open in new tab
  10. Berezovski, A., Maugin, G.A.: On the velocity of a moving phase boundary in solids. Acta Mech. 179(3-4), 187-196 (2005) open in new tab
  11. Bhattacharya, K.: Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect?. Oxford University Press, Oxford (2003) open in new tab
  12. Bhattacharya, K., James, R.D.: A theory of thin films of martensitic materials with applications to microactuators. J. Mech. Phys. Solids 47(3), 531-576 (1999) open in new tab
  13. Bhattacharya, K., James, R.D.: The material is the machine. Science 307(5706), 53-54 (2005) open in new tab
  14. Bose, D.K., Kienzler, R.: On material conservation laws for a consistent plate theory. Arch. Appl. Mech. 75(10-12), 607-617 (2006) open in new tab
  15. Boulbitch, A.A.: Equations of heterophase equilibrium of a biomembrane. Arch. Appl. Mech. 69(2), 83-93 (1999) open in new tab
  16. Chróścielewski, J., Makowski, J., Pietraszkiewicz, W.: Statyka i Dynamika Powłok Wielopłatowych. Nieliniowa Teoria i Metoda Elementów Skończonych. Wydawnictwo IPPT PAN, Warszawa (2004)
  17. Ciarlet, P.G.: Mathematical elasticity:theory of shells, 2018. North-Holland, Amsterdam (2000) open in new tab
  18. De Angelo, M., Barchiesi, E., Giorgio, I., Abali, B.E.: Numerical identification of constitutive parameters in reduced-order bi-dimensional models for pantographic structures: application to out-of-plane buckling. Arch. Appl. Mech., pp. 1-26 (2019) open in new tab
  19. Epstein, M., De León, M.: On uniformity of shells. Int. J. Solids Struct. 35(17), 2173-2182 (1998) open in new tab
  20. Epstein, M., Roychowdhury, A.: On the notion of embedded homogeneity of thin structures. Math. Mech. Solids 21(6), 657-666 (2016) open in new tab
  21. Eremeyev, V., Altenbach, H.: Basics of mechanics of micropolar shells. In: Altenbach, H., Eremeyev, V. (eds.) Shell-like Structures: Advanced Theories and Applications, pp. 63-111. Springer, Cham (2017) open in new tab
  22. Eremeyev, V.A., Cloud, M.J., Lebedev, L.P.: Applications of Tensor Analysis in Continuum Mechanics. World Scientific, New Jersey (2018) open in new tab
  23. Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer, Heidelberg (2013) open in new tab
  24. Eremeyev, V.A., Pietraszkiewicz, W.: The non-linear theory of elastic shells with phase transitions. J. Elast. 74(1), 67-86 (2004) open in new tab
  25. Eremeyev, V.A., Pietraszkiewicz, W.: Phase transitions in thermoelastic and thermoviscoelastic shells. Arch. Mech. 61(1), 41-67 (2009) open in new tab
  26. Eremeyev, V.A., Pietraszkiewicz, W.: Thermomechanics of shells undergoing phase transition. J. Mech. Phys. Solids 59(7), 1395-1412 (2011) open in new tab
  27. Eshelby, J.D.: The force on an elastic singularity. Phil. Trans. R. Soc. Lond. A 244(877), 87-112 (1951) open in new tab
  28. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 241(1226), 376-396 (1957) open in new tab
  29. Eshelby, J.D.: The elastic energy-momentum tensor. J. Elast. 5(3-4), 321-335 (1975) open in new tab
  30. Feng, P., Sun, Q.P.: Experimental investigation on macroscopic domain formation and evolution in polycrystalline NiTi microtubing under mechanical force. J. Mech. Phys. Solids 54(8), 1568-1603 (2006) open in new tab
  31. Franciosi, P., Spagnuolo, M., Salman, O.U.: Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates. Contin. Mech. Thermodyn., pp. 1-32 (2018) open in new tab
  32. Freidin, A.B.: On the chemical affinity tensor for chemical reactions in deformable materials. Mech. Solids 50(3), 260-285 (2015) open in new tab
  33. Freidin, A.B., Fu, Y.B., Sharipova, L.L., Vilchevskaya, E.N.: Spherically symmetric two-phase deformations and phase transition zones. Int. J. Solids Struct. 43(14-15), 4484-4508 (2006) open in new tab
  34. Freidin, A.B., Vilchevskaya, E.N., Korolev, I.K.: Stress-assist chemical reactions front propagation in deformable solids. Int. J. Eng. Sci. 83, 57-75 (2014) open in new tab
  35. Fu, Y.B., Freidin, A.B.: Characterization and stability of two-phase piecewise-homogeneous deformations. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 460(2051), 3065-3094 (2004) open in new tab
  36. Giorgio, I., Harrison, P., dell'Isola, F., Alsayednoor, J., Turco, E.: Wrinkling in engineering fabrics: a comparison between two different comprehensive modelling approaches. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2216), 20180,063 (2018) open in new tab
  37. Gol'denveizer, A.L.: Theory of Elastic Thin Shells. Pergamon Press, Oxford (1961) open in new tab
  38. Grinfeld, M.: Thermodynamics Methods in the Theory of Heterogeneous Systems. Longman, Harlow (1991) open in new tab
  39. Gurtin, M.E.: Configurational Forces as Basic Concepts of Continuum Physics. Springer, Berlin (2000) open in new tab
  40. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291-323 (1975) open in new tab
  41. Kienzler, R., Herrmann, G.: Mechanics in Material Space with Applications to Defect and Fracture Mechanics. Springer, Berlin (2000) open in new tab
  42. Knowles, J.K.: On the dissipation associated with equilibrium shocks in finite elasticity. J. Elast. 9(2), 131-158 (1979) open in new tab
  43. Lebedev, L.P., Cloud, M.J., Eremeyev, V.A.: Tensor Analysis with Applications in Mechanics. World Scientific, New Jersey (2010) open in new tab
  44. Li, Z.Q., Sun, Q.P.: The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension. Int. J. Plast. 18(11), 1481-1498 (2002) open in new tab
  45. Libai, A., Simmonds, J.G.: Nonlinear elastic shell theory. Adv. Appl. Mech. 23, 271-371 (1983) open in new tab
  46. Libai, A., Simmonds, J.G.: The Nonlinear Theory of Elastic Shells, 2nd edn. Cambridge University Press, Cambridge (1998) open in new tab
  47. Maugin, G.A.: Material Inhomogeneities in Elasticity. Chapman Hall, London (1993) open in new tab
  48. Maugin, G.A.: Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics. CRC Press, Boca Raton (2011) open in new tab
  49. Maugin, G.A., Berezovski, A.: On the propagation of singular surfaces in thermoelasticity. J. Therm. Stress. 32(6-7), 557-592 (2009) open in new tab
  50. Miyazaki, S., Fu, Y.Q., Huang, W.M. (eds.): Thin Film Shape Memory Alloys: Fundamentals and Device Applications. Cambridge University Press, Cambridge (2009) open in new tab
  51. Naghdi, P.: The theory of plates and shells. In: S. Flügge (ed.) Handbuch der Physik, vol. VIa/2, pp. 425-640. Springer, Heidelberg (1972) open in new tab
  52. Naumenko, K., Altenbach, H.: Modeling of Creep for Structural Analysis. Springer, Berlin (2007) open in new tab
  53. Nguyen, T.T., Bruinsma, R.F., Gelbart, W.M.: Elasticity theory and shape transitions of viral shells. Phys. Rev. E 72(5), 051923 (2005) open in new tab
  54. Nicholson, J.W., Simmonds, J.G.: Sanders' energy-release rate integral for arbitrarily loaded shallow shells and its asymptotic evaluation for a cracked cylinder. J. Appl. Mech. 47(2), 363-369 (1980) open in new tab
  55. Pietraszkiewicz, W.: The resultant linear six-field theory of elastic shells: What it brings to the classical linear shell models? ZAMM 96(8), 899-915 (2016) open in new tab
  56. Pietraszkiewicz, W., Eremeyev, V.A., Konopińska, V.: Extended non-linear relations of elastic shells undergoing phase transitions. ZAMM 87(2), 150-159 (2007) open in new tab
  57. Pietraszkiewicz, W., Konopińska, V.: Singular curve in the resultant thermomechanics of shells. Int. J. Eng. Sci. 80, 21-31 (2014) open in new tab
  58. Poluektov, M., Freidin, A.B., Figiel, Ł.: Modelling stress-affected chemical reactions in non-linear viscoelastic solids with application to lithiation reaction in spherical si particles. Int. J. Eng. Sci. 128, 44-62 (2018) open in new tab
  59. Roytburd, A., Slutsker, J.: Coherent phase equilibria in a bending film. Acta Mater. 50(7), 1809-1824 (2002) open in new tab
  60. Roytburd, A.L., Slutsker, J.: Theory of multilayer SMA actuators. Mater. Trans. 43(5), 1023-1029 (2002) open in new tab
  61. Stupkiewicz, S.: Micromechanics of Contact and Interface Layers, Lecture Notes in Applied and Computational Mechanics, vol. 30. Springer, Berlin (2007) open in new tab
  62. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics. Springer, Berlin (2004) open in new tab
  63. Wilson, E.B.: Vector Analysis, Founded Upon the Lectures of G. W. Gibbs. Yale University Press, New Haven (1901) open in new tab
  64. Yeremeyev, V.A., Freidin, A.B., Sharipova, L.L.: The stability of the equilibrium of two-phase elastic solids. J. Appl. Math. Mech. 71(1), 61-84 (2007) open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 104 times

Recommended for you

Meta Tags