Abstract
For a graph G with a given subgraph H, the backbone coloring is defined as the mapping c: V(G) -> N+ such that |c(u)-c(v)| >= 2 for each edge uv \in E(H) and |c(u)-c(v)| >= 1 for each edge uv \in E(G). The backbone chromatic number BBC(G;H) is the smallest integer k such that there exists a backbone coloring with max c(V(G)) = k. In this paper, we present the algorithm for the backbone coloring of split graphs with matching backbone.
Citations
-
1
CrossRef
-
0
Web of Science
-
1
Scopus
Author (1)
Cite as
Full text
download paper
downloaded 38 times
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.7151/dmgt.1786
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
Discussiones Mathematicae Graph Theory
no. 35,
pages 157 - 169,
ISSN: 1234-3099 - Language:
- English
- Publication year:
- 2015
- Bibliographic description:
- Turowski K.: Optimal backbone coloring of split graphs with matching backbones// Discussiones Mathematicae Graph Theory. -Vol. 35, (2015), s.157-169
- DOI:
- Digital Object Identifier (open in new tab) 10.7151/dmgt.1786
- Verified by:
- Gdańsk University of Technology
seen 135 times