Abstract
Given two polygons or polyhedrons P1 and P2, we can transform these figures to graphs G1 and G2, respectively. The polyhedral Ramsey number Rp(G1,G2) is the smallest integer n such that every graph, which represents polyhedron on n vertices either contains a copy of G1 or its complement contains a copy of G2. Using a computer search together with some theoretical results we have established some polyhedral Ramsey numbers, for example Rp(Q3,K3)=9, Rp(Q3,Q3)=13.
Author (1)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
- Published in:
-
Zeszyty Naukowe Wydziału ETI Politechniki Gdańskiej. Technologie Informacyjne
no. T.1,
pages 347 - 350,
ISSN: 1732-1166 - Language:
- English
- Publication year:
- 2011
- Bibliographic description:
- Jurkiewicz M.: Polyhedral Ramsey Numbers// Zeszyty Naukowe Wydziału ETI Politechniki Gdańskiej. Technologie Informacyjne. -Vol. T.1., (2011), s.347-350
- Verified by:
- Gdańsk University of Technology
seen 97 times
Recommended for you
On some Zarankiewicz numbers and bipartite Ramsey Numbers for Quadrilateral
- J. Dybizbański,
- T. Dzido,
- S. Radziszowski
2015