Pose-Invariant Face Detection by Replacing Deep Neurons with Capsules for Thermal Imagery in Telemedicine - Publication - Bridge of Knowledge

Search

Pose-Invariant Face Detection by Replacing Deep Neurons with Capsules for Thermal Imagery in Telemedicine

Abstract

Abstract— The aim of this work was to examine the potential of thermal imaging as a cost-effective tool for convenient, non- intrusive remote monitoring of elderly people in different possible head orientations, without imposing specific behavior on users, e.g. looking toward the camera. Illumination and pose invariant head tracking is important for many medical applications as it can provide information, e.g. about vital signs, sensory experiences, injuries, wellbeing. In the performed experiments, we investigated the influence of different modifications of images (rotation, displacement of facial features, and displacement of facial quarters) on the prediction accuracy. Specifically, two models were tested on the set of collected low-resolution thermal images: Inception V3 Convolutional Neural Network (CNN) and Hinton’s Capsule Network. The preliminary results confirm that the prediction ability of the model based on capsules can deal with different head orientations much better than CNN (for the 45o head rotation Capsule Network achieved ~100% accuracy while CNN only 9.5%).

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Cite as

Full text

download paper
downloaded 62 times
Publication version
Accepted or Published Version
License
Copyright (2018, IEEE)

Keywords

Details

Category:
Conference activity
Type:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Title of issue:
40th International Conference of the IEEE Engineering in Medicine and Biology Society strony 1 - 4
Language:
English
Publication year:
2018
Bibliographic description:
Kwaśniewska A., SZANKIN M., Rumiński J., Czuszyński K.: Pose-Invariant Face Detection by Replacing Deep Neurons with Capsules for Thermal Imagery in Telemedicine// 40th International Conference of the IEEE Engineering in Medicine and Biology Society/ : , 2018, s.1-4
DOI:
Digital Object Identifier (open in new tab) 10.1109/embc.2018.8512381
Verified by:
Gdańsk University of Technology

seen 114 times

Recommended for you

Meta Tags