Quasi-Global Optimization of Antenna Structures Using Principal Components and Affine Subspace-Spanned Surrogates - Publication - Bridge of Knowledge

Search

Quasi-Global Optimization of Antenna Structures Using Principal Components and Affine Subspace-Spanned Surrogates

Abstract

Parametric optimization is a mandatory step in the design of contemporary antenna structures. Conceptual development can only provide rough initial designs that have to be further tuned, often extensively. Given the topological complexity of modern antennas, the design closure necessarily involves full-wave electromagnetic (EM) simulations and—in many cases—global search procedures. Both factors make antenna optimization a computationally expensive endeavor: population-based metaheuristics, routinely used in this context, entail significant computational overhead. This letter proposes a novel approach that interleaves trust-region gradient search with iterative parameter space exploration by means of local kriging surrogate models. Dictated by efficiency, the latter are rendered in low-dimensional subspaces spanned by the principal components of the antenna response Jacobian matrix, extracted to identify the directions of the maximum (frequency-averaged) response variability. The aforementioned combination of techniques enables quasi-global search at the cost comparable to local optimization. These features are demonstrated using two antenna examples as well as benchmarking against multiple-start local tuning.

Citations

  • 2 7

    CrossRef

  • 0

    Web of Science

  • 2 6

    Scopus

Cite as

Full text

download paper
downloaded 31 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
IEEE Access no. 8, pages 50078 - 50084,
ISSN: 2169-3536
Language:
Polish
Publication year:
2020
Bibliographic description:
Tomasson J., Kozieł S., Pietrenko-Dąbrowska A.: Quasi-Global Optimization of Antenna Structures Using Principal Components and Affine Subspace-Spanned Surrogates// IEEE Access -Vol. 8, (2020), s.50078-50084
DOI:
Digital Object Identifier (open in new tab) 10.1109/access.2020.2980057
Bibliography: test
  1. S. Kim and S. Nam, ''A compact and wideband linear array antenna with low mutual coupling,'' IEEE Trans. Antennas Propag., vol. 67, no. 8, pp. 5695-5699, Aug. 2019. open in new tab
  2. P. S. M. Yazeen, C. V. Vinisha, S. Vandana, M. Suprava, and R. U. Nair, ''Electromagnetic performance analysis of graded dielectric inhomoge- neous streamlined airborne radome,'' IEEE Trans. Antennas Propag., vol. 65, no. 5, pp. 2718-2723, May 2017. open in new tab
  3. S. K. Karki, J. Ala-Laurinaho, V. Viikari, and R. Valkonen, ''Effect of mutual coupling between feed elements on integrated lens antenna perfor- mance,'' IET Microw., Antennas Propag., vol. 12, no. 10, pp. 1649-1655, Aug. 2018. open in new tab
  4. M. D. Gregory, Z. Bayraktar, and D. H. Werner, ''Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy,'' IEEE Trans. Antennas Propag., vol. 59, no. 4, pp. 1275-1285, Apr. 2011. open in new tab
  5. S. Basbug, ''Design and synthesis of antenna array with movable elements along semicircular paths,'' IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 3059-3062, 2017. open in new tab
  6. R. Bhattacharya, R. Garg, and T. K. Bhattacharyya, ''Design of a PIFA-driven compact yagi-type pattern diversity antenna for handheld devices,'' IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 255-258, 2016. open in new tab
  7. U. Ullah and S. Koziel, ''A broadband circularly polarized wide-slot antenna with a miniaturized footprint,'' IEEE Ant. Wireless Prop. Lett., vol. 17, no. 12, pp. 2454-2458, Dec. 2018. open in new tab
  8. M. A. Fakih, A. Diallo, P. Le Thuc, R. Staraj, O. Mourad, and E. A. Rachid, ''Optimization of efficient dual band PIFA system for MIMO half-duplex 4G/LTE and full-duplex 5G communications,'' IEEE Access, vol. 7, pp. 128881-128895, 2019. open in new tab
  9. A. Deb, J. S. Roy, and B. Gupta, ''A differential evolution performance comparison: Comparing how various differential evolution algorithms per- form in designing microstrip antennas and arrays,'' IEEE Antennas Propag. Mag., vol. 60, no. 1, pp. 51-61, Feb. 2018. open in new tab
  10. D. Ding and G. Wang, ''Modified multiobjective evolutionary algorithm based on decomposition for antenna design,'' IEEE Trans. Antennas Propag., vol. 61, no. 10, pp. 5301-5307, Oct. 2013. open in new tab
  11. A. Lalbakhsh, M. U. Afzal, and K. P. Esselle, ''Multiobjective particle swarm optimization to design a time-delay equalizer metasurface for an electromagnetic band-gap resonator antenna,'' IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 912-915, 2017. open in new tab
  12. S. K. Goudos, K. Siakavara, T. Samaras, E. E. Vafiadis, and J. N. Sahalos, ''Self-adaptive differential evolution applied to real-valued antenna and microwave design problems,'' IEEE Trans. Antennas Propag., vol. 59, no. 4, pp. 1286-1298, Apr. 2011. open in new tab
  13. R.-Q. Wang and Y.-C. Jiao, ''Synthesis of wideband rotationally symmetric sparse circular arrays with multiple constraints,'' IEEE Antennas Wireless Propag. Lett., vol. 18, no. 5, pp. 821-825, May 2019. open in new tab
  14. A. Darvish and A. Ebrahimzadeh, ''Improved fruit-fly optimization algo- rithm and its applications in antenna arrays synthesis,'' IEEE Trans. Anten- nas Propag., vol. 66, no. 4, pp. 1756-1766, Apr. 2018. open in new tab
  15. A. Aldhafeeri and Y. Rahmat-Samii, ''Brain storm optimization for elec- tromagnetic applications: Continuous and discrete,'' IEEE Trans. Antennas Propag., vol. 67, no. 4, pp. 2710-2722, Apr. 2019. open in new tab
  16. S. Karimkashi and A. A. Kishk, ''Invasive weed optimization and its features in electromagnetics,'' IEEE Trans. Antennas Propag., vol. 58, no. 4, pp. 1269-1278, Apr. 2010. open in new tab
  17. A. M. Alzahed, S. M. Mikki, and Y. M. M. Antar, ''Nonlinear mutual cou- pling compensation operator design using a novel electromagnetic machine learning paradigm,'' IEEE Antennas Wireless Propag. Lett., vol. 18, no. 5, pp. 861-865, May 2019. open in new tab
  18. J. Tak, A. Kantemur, Y. Sharma, and H. Xin, ''A 3-D-printed W-band slotted waveguide array antenna optimized using machine learning,'' IEEE Antennas Wireless Propag. Lett., vol. 17, no. 11, pp. 2008-2012, Nov. 2018. open in new tab
  19. H. M. Torun and M. Swaminathan, ''High-dimensional global optimization method for high-frequency electronic design,'' IEEE Trans. Microw. Theory Techn., vol. 67, no. 6, pp. 2128-2142, Jun. 2019. open in new tab
  20. W.-C. Weng, F. Yang, and A. Z. Elsherbeni, ''Linear antenna array syn- thesis using Taguchi's method: A novel optimization technique in electro- magnetics,'' IEEE Trans. Antennas Propag., vol. 55, no. 3, pp. 723-730, Mar. 2007. open in new tab
  21. J. B. Liu, Z. X. Shen, and Y. L. Lu, ''Optimal antenna design with QPSO-QN optimization strategy,'' IEEE Trans. Magn., vol. 50, no. 2, Feb. 2014, Art. no. 7015904. open in new tab
  22. M. F. Pantoja, P. Meincke, and A. R. Bretones, ''A hybrid genetic-algorithm space-mapping tool for the optimization of antennas,'' IEEE Trans. Anten- nas Propag., vol. 55, no. 3, pp. 777-781, Mar. 2007. open in new tab
  23. I. T. Jolliffe, Principal Component Analysis, 2nd ed. New York, NY, USA: Springer, 2002. open in new tab
  24. N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidynathan, and P. K. Tucker, ''Surrogate based analysis and optimization,'' Prog. Aerosp. Sci., vol. 41, no. 1, pp. 1-28, Jan. 2005. open in new tab
  25. B. Beachkofski and R. Grandhi, ''Improved distributed hypercube sampling,'' in Proc. Amer. Inst. Aeronaut. Astronaut. (AIAA), 2002, p. 1274. open in new tab
  26. A. I. J. Forrester and A. J. Keane, ''Recent advances in surrogate-based optimization,'' Progr. Aerosp. Sci., vol. 45, nos. 1-3, pp. 50-79, Jan.- Apr. 2009. open in new tab
  27. A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust Region Methods. Philadelphia, PA, USA: MPS-SIAM Series on Optimization, 2000. open in new tab
  28. C. G. Broyden, ''A class of methods for solving nonlinear simultaneous equations,'' Math. Comput., vol. 19, no. 92, p. 577, 1965. open in new tab
  29. M. G. N. Alsath and M. Kanagasabai, ''Compact UWB monopole antenna for automotive communications,'' IEEE Trans. Antennas Propag., vol. 63, no. 9, pp. 4204-4208, Sep. 2015. open in new tab
  30. Y.-C. Chen, S.-Y. Chen, and P. Hsu, ''Dual-band slot dipole antenna fed by a coplanar waveguide,'' in Proc. IEEE Antennas Propag. Soc. Int. Symp., Jul. 2006, pp. 3589-3592.
Verified by:
Gdańsk University of Technology

seen 123 times

Recommended for you

Meta Tags