Reduced-cost design closure of antennas by means of gradient search with restricted sensitivity update - Publication - MOST Wiedzy

Search

Reduced-cost design closure of antennas by means of gradient search with restricted sensitivity update

Abstract

Design closure, i.e., adjustment of geometry parameters to boost the performance, is a challenging stage of antenna design process. Given complexity of contemporary structures, reliable parameter tuning requires numerical optimization and can be executed using local algorithms. Yet, EM-driven optimization is a computationally expensive endeavour and reducing its cost is highly desirable. In this paper, a modification of the trust-region gradient search algorithm is proposed for accelerated optimization of antenna structures. The algorithm is based on sparse updates of antenna sensitivities involving various methods that include the Broyden formula used for selected parameters, as well as dimensionality- and convergence-dependent acceptance thresholds which enable additional speedup, and make the procedure easy to tune for various numbers of antenna parameters. Comprehensive verification executed for a set of benchmark antennas delivers consistent results and considerable cost reduction of up to 60 percent with respect to the reference algorithm. Experimental validation is also provided.

Citations

  • 0

    CrossRef

  • 1

    Web of Science

  • 2

    Scopus

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Metrology and Measurement Systems no. 26, pages 595 - 605,
ISSN: 0860-8229
Language:
English
Publication year:
2019
Bibliographic description:
Kozieł S., Pietrenko-Dąbrowska A.: Reduced-cost design closure of antennas by means of gradient search with restricted sensitivity update// Metrology and Measurement Systems -Vol. 26,iss. 4 (2019), s.595-605
DOI:
Digital Object Identifier (open in new tab) 10.24425/mms.2019.130561
Bibliography: test
  1. Saini, R.K., Dwari S. (2016). A broadband dual circularly polarized square slot antenna. IEEE Trans. Ant. Prop., 64(1), 290-294. open in new tab
  2. Liao, W.J., Hsieh, C.Y., Dai, B.Y., Hsiao, B.R. (2015). Inverted-F/slot integrated dual-band four- antenna system for WLAN access point. IEEE Ant. Wireless Prop. Lett., 14, 847-850. open in new tab
  3. Zhang, L., Gao, S., Luo, Q., Young, P.R., Li, Q. (2017). Wideband loop antenna with electronically switchable circular polarization. IEEE Ant. Wireless Prop. Lett., 16, 242-245. open in new tab
  4. Vendik, I.B., Rusakov, A., Kanjanasit, K., Hong, J., Filonov, D. (2017). Ultrawideband (UWB) planar antenna with single-, dual-and triple-band notched characteristic based on electric ring resonator. IEEE Ant. Wireless Prop. Lett., 16, 1597-1600. open in new tab
  5. Narbudowicz A., Amman, M.J. (2018). Low-cost multimode patch antenna for dual MIMO and enhanced localization use. IEEE Trans. Ant. Prop., 66(1), 405-408. open in new tab
  6. Wu, J., Sarabandi, K. (2017). Compact omnidirectional circularly polarized antenna. IEEE Trans. Ant. Prop., 65(4), 1550-1557. open in new tab
  7. Balanis, C.A., (Editor), (2008). Modern Antenna Handbook. Wiley. open in new tab
  8. Wei, D.J., Li, J., Yang, G., Liu, J., Yang, J.J. (2018). Design of compact dual-band SIW slotted array antenna. IEEE Ant. Wireless Prop. Lett., 17(6), 1085-1089. open in new tab
  9. Zhu, S., Liu, H., Chen, Z., Wen, P. (2018). A compact gain-enhanced Vivaldi antenna array with suppressed mutual coupling for 5G mmwave application. IEEE Ant. Wireless Prop. Lett., 17(5), 776- 779. open in new tab
  10. Koziel, S., Bekasiewicz, A. (2016). Multi-objective design of antennas using surrogate models. World Scientific. open in new tab
  11. Wang, J., Yang, X.S., Ding, X., Wang, B.Z. (2017). Antenna radiation characteristics optimization by a hybrid topological method. IEEE Trans. Ant. Prop., 65(6), 2843-2854. open in new tab
  12. Kouassi, A., Nguyen-Trong, N., Kaufmann, T., Lallechere, S., Bonnet, P., Fumeaux, C. (2016). Reliability-aware optimization of a wideband antenna. IEEE Trans. Ant. Prop., 64(2), 450-460. open in new tab
  13. Choi, K., Jang, D.H., Kang, S.I., Lee, J.H., Chung, T K., Kim, H.S. (2016). Hybrid algorithm combining genetic algorithm with evolution strategy for antenna design. IEEE Trans. Magn., 52(3), 1-4. open in new tab
  14. Zaharis, Z.D., Gravas, I.P., Yioultsis, T.V., Lazaridis, P.I., Glover, I.A., Skeberis, C., Xenos, T.D. (2017). Exponential log-periodic antenna design using improved particle swarm optimization with velocity mutation. IEEE Trans. Magn., 53(6), 1-4. open in new tab
  15. Ghassemi, M., Bakr, M., Sangary, N. (2013). Antenna design exploiting adjoint sensitivity-based geometry evolution. IET Microwaves Ant. Prop., 7(4), 268-276. open in new tab
  16. Xiao, L.Y., Shao, W., Ding, X., Wang, B.Z. (2018). Dynamic adjustment kernel extreme learning machine for microwave component design. IEEE Trans. Microwave Theory Techn., 66(10), 4452- 4461. open in new tab
  17. Koziel, S. Ogurtsov, S. (2014). Antenna design by simulation-driven optimization. Surrogate-based approach. Springer. open in new tab
  18. de Villiers, D.I.L., Couckuyt, I., Dhaene, T. (2017). Multi-objective optimization of reflector antennas using kriging and probability of improvement. Int. Symp. Ant. Prop., San Diego, USA, 985-986. open in new tab
  19. Jacobs, J.P. (2016). Characterization by Gaussian processes of finite substrate size effects on gain patterns of microstrip antennas. IET Microwaves Ant. Prop., 10(11), 1189-1195. open in new tab
  20. Zhu, J., Bandler, J.W., Nikolova, N.K., Koziel, S. (2007). Antenna optimization through space mapping. IEEE Trans. Ant. Prop., 55(3), 651-658. open in new tab
  21. Koziel, S., Unnsteinsson, S.D. (2018). Expedited design closure of antennas by means of trust-region- based adaptive response scaling. IEEE Ant. Wireless Prop. Lett., 17(6),1099-1103. open in new tab
  22. Su, Y., Lin, J., Fan, Z., Chen, R. (2017). Shaping optimization of double reflector antenna based on manifold mapping. Int. Applied Computational Electromagnetic Society Symp. (ACES), Suzhou, China, 1-2.
  23. Koziel, S. (2015). Fast simulation-driven antenna design using response-feature surrogates. Int. J. RF & Micr. CAE, 25(5), 394-402. open in new tab
  24. Bekasiewicz, A., Koziel, S., Cheng, Q.S. (2018). Reduced-cost constrained miniaturization of wide- band antennas using improved trust-region gradient search with repair step. IEEE Antennas Wireless Prop. Lett., 17(4), 559-562. open in new tab
  25. Chen, Y.-C., Chen, S.-Y., Hsu, P. (2006). Dual-band slot dipole antenna fed by a coplanar waveguide. IEEE Int. Symp. Ant. Prop., Albuquerque, USA, 3589-3592.
  26. Alsath, M.G.N., Kanagasabai, M. (2015). Compact UWB monopole antenna for automotive commu- nications. IEEE Trans. Ant. Prop., 6(9), 4204-4208. open in new tab
  27. Suryawanshi, D.R., Singh, B.A. (2014). A compact UWB rectangular slotted monopole antenna. IEEE Int. Conf. Control, (ICCICCT), Kanyakumari, India, 1130-1136. open in new tab
  28. Conn, A., Scheinberg, K., Vincente, L.N. (2009). Introduction to Derivative-Free Optimization. MPS- SIAM Series on Optimization. open in new tab
  29. Nocedal, J., Wright, S. (2006). Numerical Optimization. 2nd ed., Springer. open in new tab
Verified by:
Gdańsk University of Technology

seen 31 times

Recommended for you

Meta Tags