Rheology of Variable Viscosity‐Based Mixed Convective Inclined Magnetized Cross Nanofluid with Varying Thermal Conductivity
Abstract
Cross nanofluid possesses an extraordinary quality among the various fluidic models to explore the key characteristics of flowing fluid during very low and very high shear rates and its viscosity models depend upon shear rate. The current study establishes the numerical treatment regarding variable viscosity‐based mixed convective inclined magnetized Cross nanofluid with var‐ ying thermal conductivities over the moving permeable surface. Along with variable thermal con‐ ductivities, we considered thermal radiation, thermophoresis, and the Brownian motion effect. An inclined magnetic field was launched for velocity scrutiny and the heat transfer fact was numeri‐ cally seen by mixed convective conditions. Similarity variables were actioned on generated PDEs of the physical model and conversion was performed into ODEs. Numerical results showed that the frictional force and Nusselt quantity considerably influence the skinning heat transfer processes over the geometry of a moving permeable surface. Furthermore, less velocity was noticed for the greater suction parameter and the Brownian motion parameter corresponds to lower mass transport.
Citations
-
2 8
CrossRef
-
0
Web of Science
-
2 4
Scopus
Authors (9)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/app12189041
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Applied Sciences-Basel
no. 12,
ISSN: 2076-3417 - Language:
- English
- Publication year:
- 2022
- Bibliographic description:
- Darvesh A., Sajid T., Jamshed W., Ayub A., Shah Z., Eid M., Hussain S. M., Hafeez M. B., Krawczuk M.: Rheology of Variable Viscosity‐Based Mixed Convective Inclined Magnetized Cross Nanofluid with Varying Thermal Conductivity// Applied Sciences-Basel -Vol. 12,iss. 18 (2022), s.9041-
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/app12189041
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 84 times
Recommended for you
Galerkin Finite Element Process for Entropy Production and Thermal Evaluation of Third-Grade Fluid Flow: A Thermal Case Study
- F. Shahzad,
- W. Jamshed,
- E. S. M. T. El Din
- + 7 authors
Improved finite element method for flow, heat and solute transport of Prandtl liquid via heated plate
- M. B. Hafeez,
- M. Krawczuk,
- W. Jamshed
- + 3 authors
Activation Energy and Inclination Magnetic Dipole Influences on Carreau Nanofluid Flowing via Cylindrical Channel with an Infinite Shearing Rate
- A. Ayud,
- T. Sajid,
- W. Jamshed
- + 7 authors