Sieci neuronowe oparte na prawach fizyki - Publication - Bridge of Knowledge

Search

Sieci neuronowe oparte na prawach fizyki

Abstract

Wiele fizycznie nieuzasadnionych sieci neuronowych, mimo zadowalają- cej wydajności, generuje sprzeczności z logiką i prowadzi do rozbieżno- ści wyników z rzeczywistością. Jedną z metod poprawy funkcjonowania typowego modelu typu “black-box” na etapie uczenia, jest rozszerzenie jego funkcji kosztu o zależność bezpośrednio inspirowaną wzorem fizycz- nym. Niniejszy rozdział wyjaśnia koncepcję budowy sieci neuronowych opartych na prawach fizyki, zawiera przegląd zaproponowanych rozwią- zań w tej dziedzinie oraz opisuje możliwości implementacji funkcji strat wykorzystujących wzory fizyczne. Ponadto przedstawione badania poka- zują, że przewidywania algorytmów inspirowanych przez fizykę mogą być nie tylko optymalne, ale również naukowo spójne z równaniami dziedzi- nowymi. Ostatecznie wykorzystanie wiedzy naukowej zawartej w dosto- sowanych funkcjach kosztów pokazuje, że metodyka ta gwarantuje wy- niki spójne z prawami fizyki, a także lepszą generalizację w porównaniu z klasycznymi sieciami neuronowymi.

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Monographic publication
Type:
rozdział, artykuł w książce - dziele zbiorowym /podręczniku o zasięgu krajowym
Language:
Polish
Publication year:
2021
Bibliographic description:
Moszyński M., Borzyszkowski B., Damaszke K., Romankiewicz J., Świniarski M.: Sieci neuronowe oparte na prawach fizyki// Uczenie maszynowe i systemy rozproszone/ : , 2021, s.110-119
Verified by:
Gdańsk University of Technology

seen 293 times

Recommended for you

Meta Tags