State of the art and prospects of methods for determination of lipophilicity of chemical compounds - Publication - Bridge of Knowledge

Search

State of the art and prospects of methods for determination of lipophilicity of chemical compounds

Abstract

Lipophilicity of the compounds is useful to (i) explain their distribution in biological systems, which is different in plant and in animal organisms, (ii) predict the possible pathways of pollutant transport in the environment, and (iii) support drug discovery process and select optimal composition in terms of bioactivity and bioavailability. The lipophilic properties can be determined by two main approaches, experimental, which apply instrumental techniques or computational, which is based on the complex algorithms. This review focuses primarily on various analytical methods that are used in the lipophilicity measurements. The classical methods and others based on chromatographic, electroanalytical and electroseparation approaches are compared and described in details. Modern solutions with chromatographic systems and their practical applications in the measurements of lipophilic and biomimetic properties of compounds have been included. However, there is an urgent need to standardize the high-throughput and reliable analytical procedure of the evaluation of lipophilic properties.

Citations

  • 3 6

    CrossRef

  • 0

    Web of Science

  • 3 9

    Scopus

Cite as

Full text

download paper
downloaded 256 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
TRAC-TRENDS IN ANALYTICAL CHEMISTRY no. 113, pages 54 - 73,
ISSN: 0165-9936
Language:
English
Publication year:
2019
Bibliographic description:
Kempińska-Kupczyk D., Chmiel T., Kot-Wasik A., Mróz A., Mazerska Z., Namieśnik J.: State of the art and prospects of methods for determination of lipophilicity of chemical compounds// TRAC-TRENDS IN ANALYTICAL CHEMISTRY. -Vol. 113, (2019), s.54-73
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.trac.2019.01.011
Bibliography: test
  1. M. Nič, J. Jirát, B. Košata, A. Jenkins, A. McNaught, eds., IUPAC. Compendium of Chemical 688 open in new tab
  2. Terminology. Gold Book., IUPAC, Research Triagle Park, NC, 2014. doi:10.1351/goldbook. 689 open in new tab
  3. C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational 690 approaches to estimate solubility and permeability in drug discovery and development, Adv. open in new tab
  4. Drug Deliv. Rev. 46 (2001) 3-26. open in new tab
  5. C.T. Chiou, Environmental partitioning and contamination of organic compounds, J. Chinese 693 Inst. Environ. Eng. 13 (2003) 1-6. open in new tab
  6. M.G. Montalbán, M. Collado-González, R. Trigo, F.G. Díaz Baños, G. Víllora, Experimental 695 Measurements of Octanol-Water Partition Coefficients of Ionic Liquids, J. Adv. Chem. Eng. 5 696 (2015) 133. doi:10.4172/2090-4568.1000. open in new tab
  7. F. Tsopelas, A.T. Kakoulidou, M. Ochsenkühn-Petropoulou, Lipophilicity, biomimetic retention 698 profile and antioxidant activity of selenium species, Microchem. J. 110 (2013) 711-718. 699 doi:10.1016/j.microc.2013.08.009. open in new tab
  8. S.K. Poole, C.F. Poole, Separation methods for estimating octanol-water partition coefficients, 701 open in new tab
  9. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 797 (2003) 3-19. 702 doi:10.1016/j.jchromb.2003.08.032. open in new tab
  10. M.V. Aguilar, C. Otero, eds., Frontiers in Bioactive Compounds. Vol 2: At the Crossroads 704 Between Nutrition and Pharmacology, BENTHAM SCIENCE PUBLISHERS, Sharjah, 2017. 705 doi:10.2174/97816810842991170201. open in new tab
  11. I.-C. Hwang, H. Kwak, S.-J. Park, Determination and prediction of Kow and dimensionless 707 open in new tab
  12. Henry's constant (H) for 6 ether compounds at several temperatures, J. Ind. Eng. Chem. 16 708 (2010) 629-633. doi:10.1016/j.jiec.2010.03.003. open in new tab
  13. M. Shoeib, T. Harner, Using measured octanol-air partition coefficients to explain 984-90. doi:10.1002/etc.5620210513. open in new tab
  14. Y. Wang, J. Chen, X. Yang, F. Lyakurwa, X. Li, X. Qiao, In silico model for predicting soil 718 organic carbon normalized sorption coefficient (KOC) of organic chemicals, Chemosphere. 719 119 (2015) 438-444. doi:10.1016/J.CHEMOSPHERE.2014.07.007. open in new tab
  15. I.T. Cousins, A.J. Beck, K.C. Jones, A review of the processes involved in the exchange of 721 semi-volatile organic compounds (SVOC) across the air-soil interface, Sci. Total Environ. 228 722 (1999) 5-24. doi:10.1016/S0048-9697(99)00015-7. open in new tab
  16. Y.S. Tarahovsky, Y.A. Kim, E.A. Yagolnik, E.N. Muzafarov, Flavonoid-membrane interactions: 724 Involvement of flavonoid-metal complexes in raft signaling, Biochim. Biophys. Acta - 725 open in new tab
  17. Biomembr. 1838 (2014) 1235-1246. doi:10.1016/J.BBAMEM.2014.01.021. open in new tab
  18. D.J. McClements, Utilizing food effects to overcome challenges in delivery of lipophilic 727 bioactives: structural design of medical and functional foods, Expert Opin. Drug Deliv. 10 728 (2013) 1621-1632. doi:10.1517/17425247.2013.837448. open in new tab
  19. J.A. Arnott, S.L. Planey, The influence of lipophilicity in drug discovery and design, Expert 730 open in new tab
  20. Opin. Drug Discov. 7 (2012) 863-875. doi:10.1517/17460441.2012.714363. open in new tab
  21. F. Lombardo, R.S. Obach, M.Y. Shalaeva, F. Gao, Prediction of volume of distribution values 732 in humans for neutral and basic drugs using physicochemical measurements and plasma 733 protein binding data., J. Med. Chem. 45 (2002) 2867-76. open in new tab
  22. J. Viskupičová, M. Ondrejovič, E. Šturdík, Bioavailability and metabolism of flavonoids., J. open in new tab
  23. Food Nutr. Res. 47 (2008) 151-162. http://www.ncbi.nlm.nih.gov/pubmed/21870774. open in new tab
  24. E. Kotake-Nara, Bioavailability and Functions of Lipophilic Components of Food, Ann.
  25. Pharmacol. Pharm. Ann Pharmacol Pharm. 2 (2017) 1094. open in new tab
  26. M.J. Rein, M. Renouf, C. Cruz-Hernandez, L. Actis-Goretta, S.K. Thakkar, M. da Silva Pinto, 740 open in new tab
  27. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy, Br. J. Clin. open in new tab
  28. Pharmacol. 75 (2013) 588-602. doi:10.1111/j.1365-2125.2012.04425.x. open in new tab
  29. K.L. Valko, Lipophilicity and biomimetic properties measured by HPLC to support drug 743 discovery, J. Pharm. Biomed. Anal. 130 (2016) 35-54. doi:10.1016/j.jpba.2016.04.009. 744 [22] open in new tab
  30. F. Tsopelas, C. Giaginis, A. Tsantili-Kakoulidou, Lipophilicity and biomimetic properties to 745 support drug discovery, Expert Opin. Drug Discov. 12 (2017) 885-896. 746 doi:10.1080/17460441.2017.1344210. open in new tab
  31. E. Rutkowska, K. Paja k, K. Jóźwiak, Lipophilicity -Methods of determination and its role in 748 medicinal chemistry, Acta Pol. Pharm. -Drug Res. (2013) 3-18.
  32. R.D. Briciu, A. Kot-Wasik, A. Wasik, J. Namieśnik, C. Sârbu, The lipophilicity of artificial and 750 natural sweeteners estimated by reversed-phase thin-layer chromatography and computed by 751 various methods, J. Chromatogr. A. 1217 (2010) 3702-3706. 752 doi:10.1016/j.chroma.2010.03.057. open in new tab
  33. K. Mazák, J. Vámos, A. Nemes, Á. Rácz, B. Noszál, Lipophilicity of vinpocetine and related open in new tab
  34. B. Testa, Pharmacokinetic optimization in drug research : biological, physicochemical, and [28] open in new tab
  35. D. Casoni, A. Kot-Wasik, J. Namieśnik, C. Sârbu, Lipophilicity data for some preservatives 763 estimated by reversed-phase liquid chromatography and different computation methods, J. open in new tab
  36. Chromatogr. A. 1216 (2009) 2456-2465. doi:10.1016/j.chroma.2009.01.029. open in new tab
  37. X. Liu, H. Tanaka, A. Yamauchi, B. Testa, H. Chuman, Determination of lipophilicity by 766 reversed-phase high-performance liquid chromatography Influence of 1-octanol in the mobile 767 phase, J. Chromatogr. A. 1091 (2005) 51-59. doi:10.1016/j.chroma.2005.07.029. open in new tab
  38. D. Lu, P. Chambers, P. Wipf, X.-Q. Xie, D. Englert, S. Weber, Lipophilicity screening of novel 769 drug-like compounds and comparison to clog P, J. Chromatogr. A. 1258 (2012) 161-167. 770 doi:10.1016/j.chroma.2012.07.078. open in new tab
  39. C. Sârbu, D. Casoni, A. Kot-Wasik, A. Wasik, J. Namieśnik, Modeling of chromatographic 772 lipophilicity of food synthetic dyes estimated on different columns, J. Sep. Sci. 33 (2010) 2219- 773 2229. doi:10.1002/jssc.201000099. open in new tab
  40. J.M. Pallicer, J. Sales, M. Rosés, C. Ràfols, E. Bosch, Lipophilicity assessment of basic drugs 775 (log P o/w determination) by a chromatographic method, J. Chromatogr. A. 1218 (2011) 6356- 776 6368. doi:10.1016/j.chroma.2011.07.002. open in new tab
  41. F. Andrić, D. Bajusz, A. Rácz, S. Šegan, K. Héberger, Multivariate assessment of lipophilicity 778 scales-computational and reversed phase thin-layer chromatographic indices, J. Pharm. open in new tab
  42. Biomed. Anal. 127 (2016) 81-93. doi:10.1016/j.jpba.2016.04.001. open in new tab
  43. L.G. Danielsson, Y.H. Zhang, Methods for determining n-octanol-water partition constants, 781 open in new tab
  44. TrAC -Trends Anal. Chem. 15 (1996) 188-196. doi:10.1016/0165-9936(96)00003-9. open in new tab
  45. D.E. Leahy, P.J. Taylor, A.R. Wait, Model Solvent Systems for QSAR Part I. Propylene Glycol 783 open in new tab
  46. Dipelargonate (PGDP). A new Standard Solvent for use in Partition Coefficient Determination, 784
  47. Quant. Struct. Relationships. 8 (1989) 17-31. doi:10.1002/qsar.19890080104. open in new tab
  48. T. Hartmann, J. Schmitt, Lipophilicity -Beyond octanol/water: A short comparison of modern 786 technologies, Drug Discov. Today Technol. 1 (2004) 431-439. 787 doi:10.1016/j.ddtec.2004.10.006. open in new tab
  49. Y.W. Alelyunas, L. Pelosi-Kilby, P. Turcotte, M.B. Kary, R.C. Spreen, A high throughput dried 789 DMSO Log D lipophilicity measurement based on 96-well shake-flask and atmospheric 790 pressure photoionization mass spectrometry detection, J. Chromatogr. A. 1217 (2010) 1950- 791 1955. doi:10.1016/j.chroma.2010.01.071. open in new tab
  50. Y. Dohta, T. Yamashita, S. Horiike, T. Nakamura, T. Fukami, A system for LogD screening of 793 96-well plates using a water-plug aspiration/injection method combined with high-performance 794 liquid chromatography-mass spectrometry, Anal. Chem. 79 (2007) 8312-8315. 795 doi:10.1021/ac0709798. open in new tab
  51. B. Lin, J. Pease, A Novel Method for High Throughput Lipophilicity Determination by 797 open in new tab
  52. Microscale Shake Flask and Liquid Chromatography Tandem Mass Spectrometry, Comb. open in new tab
  53. Chem. High Throughput Screen. 16 (2013) 817-825. doi:10.2174/1386207311301010007. open in new tab
  54. L. Saghaie, R.C. Hider, A.S. Mostafavi, Comparison of Automated Continuous Flow Method 800 With Shake-Flask Method in Determining Partition Coefficients of Bidentate 801 open in new tab
  55. Hydroxypyridinone Ligands, DARU J. Pharm. Sci. 11 (2003) 38-46. open in new tab
  56. H. Cumming, C. Rücker, Octanol-Water Partition Coefficient Measurement by a Simple 1 H 803 NMR Method, ACS Omega. 2 (2017) 6244-6249. doi:10.1021/acsomega.7b01102. open in new tab
  57. J. Pawliszyn, Solid phase microextraction : theory and practice, Wiley-VCH, 1997. open in new tab
  58. C.L. Arthur, L.M. Killam, K.D. Buchholz, J. Pawliszyn, J.R. Berg, Automation and optimization open in new tab
  59. M. Chai, C.L. Arthur, J. Pawliszyn, R.P. Belardi, K.F. Pratt, Determination of volatile open in new tab
  60. M. Kah, C.D. Brown, Log D: Lipophilicity for ionisable compounds, Chemosphere. 72 (2008) 826 1401-1408. doi:10.1016/J.CHEMOSPHERE.2008.04.074. open in new tab
  61. D.N. Brooke, A.J. Dobbs, N. Williams, Octanol:water partition coefficients (P): measurement, 828 estimation, and interpretation, particularly for chemicals with P greater than 10(5)., Ecotoxicol. open in new tab
  62. Environ. Saf. 11 (1986) 251-60. doi:10.1016/0147-6513(86)90099-0. open in new tab
  63. J. De Bruijn, F. Busser, W. Seinen, J. Hermens, Determination of octanol/water partition 831 coefficients for hydrophobic organic chemicals with the "slow-stirring" method, Environ. open in new tab
  64. Toxicol. Chem. 8 (1989) 499-512. doi:10.1002/etc.5620080607. open in new tab
  65. A. Avdeef, Absorption and drug development : solubility, permeability, and charge state, John 834 open in new tab
  66. S.H. Unger, G.H. Chiang, Octanol-Physiological Buffer Distribution Coefficients of Lipophilic 836 open in new tab
  67. Amines by Reversed-Phase High-Performance Liquid Chromatography and Their Correlation 837 with Biological Activity, J. Med. Chem. 24 (1981) 262-270. open in new tab
  68. A. Hulshoff, J.H. Perrin, A reversed-phase thin-layer chromatographic method for the 839 determination of relative partition coefficients of very lipophilic compounds, J. Chromatogr. A. 840 120 (1976) 65-80. doi:10.1016/S0021-9673(01)98998-8. open in new tab
  69. J. Sherma, B. Fried, Handbook of thin-layer chromatography, Marcel Dekker, 2003. 842 [57] open in new tab
  70. E.C. Bate-Smith, R.G. Westall, Chromatographic behaviour and chemical structure I. Some 843 naturally occuring phenolic substances, Biochim. Biophys. Acta. 4 (1950) 427-440. 844 doi:10.1016/0006-3002(50)90049-7. open in new tab
  71. E. Soczewiński, C.A. Wachtmeister, The relation between the composition of certain ternary open in new tab
  72. M. Janicka, K. Stępnik, A. Pachuta-Stec, Quantification of Lipophilicity of 1,2,4-Triazoles Using open in new tab
  73. K.E. Stępnik, I. Malinowska, E. Rój, in vitro and in silico determination of oral, jejunum and 855 open in new tab
  74. Caco-2 human absorption of fatty acids and polyphenols. Micellar liquid chromatography, 856 open in new tab
  75. Talanta. 130 (2014) 265-273. doi:10.1016/J.TALANTA.2014.06.039. open in new tab
  76. K. Ciura, M. Belka, P. Kawczak, T. Bączek, J. Nowakowska, The comparative study of micellar 858 TLC and RP-TLC as potential tools for lipophilicity assessment based on QSRR approach, J. open in new tab
  77. Pharm. Biomed. Anal. 149 (2018) 70-79. doi:10.1016/J.JPBA.2017.10.034. open in new tab
  78. M. Janicka, D. Pietras-Ożga, Chromatographic evaluation of the lipophilicity of N - 861 phenyltrichloroacetamide derivatives using micellar TLC and OPLC, J. Planar Chromatogr. - 862 open in new tab
  79. Mod. TLC. 23 (2010) 396-399. doi:10.1556/JPC.23.2010.6.2. open in new tab
  80. M.J. Ruiz-Ángel, S. Carda-Broch, J.R. Torres-Lapasió, M.C. García-Álvarez-Coque, Retention 864 mechanisms in micellar liquid chromatography, J. Chromatogr. A. 1216 (2009) 1798-1814. 865 doi:10.1016/J.CHROMA.2008.09.053. open in new tab
  81. T. Braumann, Determination of hydrophobic parameters by reversed-phase liquid 867 chromatography: theory, experimental techniques, and application in studies on quantitative 868 structure-activity relationshipse, J. Chromatogr. A. 373 (1986) 191-225. doi:10.1016/S0021- 869 open in new tab
  82. W.J. Lambert, Modeling oil-water partitioning and membrane permeation using reversed- 871 phase chromatography, J. Chromatogr. A. 656 (1993) 469-484. doi:10.1016/0021- 872 9673(93)80814-O. open in new tab
  83. C. Liang, H. Lian, Recent advances in lipophilicity measurement by reversed-phase high- 874 performance liquid chromatography, Trends Anal. Chem. 68 (2015) 28-36. 875 doi:10.1016/j.trac.2015.02.009. open in new tab
  84. K. Valkó, Application of high-performance liquid chromatography based measurements of 877 lipophilicity to model biological distribution, J. Chromatogr. A. 1037 (2004) 299-310. 878 doi:10.1016/j.chroma.2003.10.084. open in new tab
  85. OECD, Guideline for Testing of Chemicals, no. 117: Partition Coefficient (n-octanol/water), 880 open in new tab
  86. High Performance Liquid Chromatography Method, 1986 (1989) 1-11. open in new tab
  87. K. Valko, C. Du, C. Bevan, D. Reynolds, M. Abraham, Rapid method for the estimation of 882 open in new tab
  88. octanol/water partition coefficient (Log Poct) from gradient RP-HPLC retention and a hydrogen 883 bond acidity term, Curr. Med. Chem. 24 (2001) 1137-1146. doi:10.1081/JLC-100103400. open in new tab
  89. C. Stella, A. Galland, X. Liu, B. Testa, S. Rudaz, J.L. Veuthey, P.A. Carrupt, Novel RPLC 885 stationary phases for lipophilicity measurement: Solvatochromic analysis of retention 886 mechanisms for neutral and basic compounds, J. Sep. Sci. 28 (2005) 2350-2362. 887 doi:10.1002/jssc.200500104. open in new tab
  90. E. Lesellier, C. West, A. Tchapla, Classification of special octadecyl-bonded phases by the 889 carotenoid test, J. Chromatogr. A. 1111 (2006) 62-70. doi:10.1016/j.chroma.2006.01.107. 890 open in new tab
  91. K. Valko, S. Nunhuck, C. Bevan, M.H. Abraham, D.P. Reynolds, Fast gradient HPLC method 891 to determine compounds binding to human serum albumin. Relationship wth octanol water and 892 immobilized artificial membrane lipophilicity, J. Pharm. Sci. 92 (2003) 2236-2248. 893 doi:10.1002/jps.10494. open in new tab
  92. Ł. Kubik, W. Struck-Lewicka, R. Kaliszan, P. Wiczling, Simultaneous determination of open in new tab
  93. R. Kaliszan, Quantitative structure-(chromatographic) retention relationships, Chem. Rev. 107 open in new tab
  94. C. Giaginis, A. Tsantili-Kakoulidou, Alternative measures of lipophilicity: from octanol-water partitioning to IAM retention, J. Pharm. Sci. 97 (2008) 2984-3004. doi:10.1002/JPS.21244. 902 [77] open in new tab
  95. B. Zheng, L.M. West, Estimating the lipophilicity of natural products using a polymeric reversed 903 phase HPLC method, J. Liq. Chromatogr. Relat. Technol. 33 (2009) 118-132. 904 doi:10.1080/10826070903430464. open in new tab
  96. R. Kaliszan, High performance liquid chromatographic methods and procedures of 906 hydrophobicity determination, Quant. Struct.-Act. Relat. 9 (1990) 83-87. 907 doi:10.1002/qsar.19900090202. open in new tab
  97. A. Méndez, E. Bosch, M. Rosés, U.D. Neue, Comparison of the acidity of residual silanol 909 groups in several liquid chromatography columns, J. Chromatogr. A. 986 (2003) 33-44. 910 doi:10.1016/S0021-9673(02)01899-X. open in new tab
  98. V. Pliška, B. Testa, H. van de Waterbeemd, Lipophilicity in Drug Action and Toxicology, VCH 912 Publisher, Weinheim, 1996. doi:10.1002/9783527614998. open in new tab
  99. B. Sethi, M. Soni, S. Kumar, G.D. Gupta, S. Mishra, R. Singh, Lipophilicity measurement 914 through newer techniques, J. Pharm. Res. 3 (2010) 345-351.
  100. C. Giaginis, A. Tsantili-Kakoulidou, Current state of the art in HPLC methodology for 916 lipophilicity assessment of basic drugs. A review, J. Liq. Chromatogr. Relat. Technol. 31 917 (2008) 79-96. doi:10.1080/10826070701665626. open in new tab
  101. R.S. Ward, J. Davies, G. Hodges, D.W. Roberts, A pplications of immobilised artificial 919 membrane chromatography to quaternary alkylammonium sulfobetaines and comparison of 920 chromatographic methods for estimating the octanol-water partition coefficient, 1007 (2003) 921 67-75. doi:10.1016/S0021-9673(03)00947-6. open in new tab
  102. F. Lombardo, M.Y. Shalaeva, K.A. Tupper, F. Gao, ElogDoct: A tool for lipophilicity 923 determination in drug discovery. 2. Basic and neutral compounds, J. Med. Chem. 44 (2001) 924 2490-2497. doi:10.1021/jm0100990. open in new tab
  103. D. Benhaim, E. Grushka, Characterization of the Gemini C18 TM column: Lipophilicity 926 measurement and LSER, J. Liq. Chromatogr. Relat. Technol. 31 (2008) 2198-2218. 927 doi:10.1080/10826070802279202. open in new tab
  104. D. Benhaim, E. Grushka, Effect of n-octanol in the mobile phase on lipophilicity determination 929 by reversed-phase high-performance liquid chromatography on a modified silica column, J. open in new tab
  105. Chromatogr. A. 1209 (2008) 111-119. doi:10.1016/j.chroma.2008.08.118. open in new tab
  106. C. Liang, J. Qiao, H. Lian, Determination of reversed-phase high performance liquid 932 chromatography based octanol-water partition coefficients for neutral and ionizable 933 compounds: Methodology evaluation, J. Chromatogr. A. 1528 (2017) 1-16. 934 doi:10.1016/j.chroma.2017.10.064. open in new tab
  107. X. Liu, H. Tanaka, A. Yamauchi, B. Testa, H. Chuman, Lipophilicity measurement by reversed- 936 phase high-performance liquid chromatography (RP-HPLC): A comparison of two stationary 937 phases based on retention mechanisms, Helv. Chim. Acta. 87 (2004) 2866-2876. 938 doi:10.1002/hlca.200490258. open in new tab
  108. N. Gulyaeva, A. Zaslavsky, P. Lechner, M. Chlenov, A. Chait, B. Zaslavsky, Relative 940 hydrophobicity and lipophilicity of b-blockers and related compounds as measured by aqueous 941 two-phase partitioning , octanol -buffer partitioning , and HPLC, Eur. J. Pharm. Sci. 17 (2002) 942 81-93. doi:10.1016/S0928-0987(02)00146-X. open in new tab
  109. S.F. Donovan, M.C. Pescatore, Method for measuring the logarithm of the octanol-water blocking agents on human serum albumin and α1-acid glycoprotein HPLC columns: 949 Relationships with different scales of lipophilicity, Eur. J. Pharm. Sci. 38 (2009) 472-478. 950 doi:10.1016/j.ejps.2009.09.011. open in new tab
  110. D.S. Hage, J. Austin, High-performance affinity chromatography and immobilized serum 952 albumin as probes for drug-and hormone-protein binding, J. Chromatogr. B. 739 (2000) 39- 953 54. doi:10.1016/S0378-4347(99)00445-4. open in new tab
  111. A. Taillardat-Bertschinger, P.A. Carrupt, F. Barbato, B. Testa, Immobilized artificial membrane 955 HPLC in drug research, J. Med. Chem. 46 (2003) 655-665. doi:10.1021/jm020265j. open in new tab
  112. B.H. Stewart, O.H. Chan, Use of immobilized artificial membrane chromatography for drug 957 transport applications, J. Pharm. Sci. 87 (1998) 1471-1478. doi:10.1021/js980262n. 958 [95] open in new tab
  113. C. Pidgeon, S. Ong, H. Liu, X. Qiu, M. Pidgeon, A.H. Dantzig, J. Munroe, W.J. Hornback, J.S. open in new tab
  114. Kasher, L. Glunz, T. Szczerba, IAM chromatography: an in vitro screen for predicting drug 960 membrane permeability, J. Med. Chem. 38 (1995) 590-594. doi:10.1021/jm00004a004. open in new tab
  115. E.S. Gallagher, E. Mansfield, C.A. Aspinwall, Stabilized phospholipid membranes in 962 chromatography: toward membrane protein-functionalized stationary phases, Anal. Bioanal. open in new tab
  116. Chem. 406 (2014) 2223-2229. doi:10.1007/s00216-013-7545-2. open in new tab
  117. F. Tsopelas, T. Vallianatou, A. Tsantili-Kakoulidou, The potential of immobilized artificial 965 membrane chromatography to predict human oral absorption, Eur. J. Pharm. Sci. 81 (2016) 966 82-93. doi:10.1016/j.ejps.2015.09.020. open in new tab
  118. F. Barbato, G. Di Martino, L. Grumetto, M.I. La Rotonda, Prediction of drug-membrane 968 interactions by IAM-HPLC: Effects of different phospholipid stationary phases on the partition 969 of bases, Eur. J. Pharm. Sci. 22 (2004) 261-269. doi:10.1016/j.ejps.2004.03.019. open in new tab
  119. F. Barbato, The use of immobilised artificial membrane (IAM) chromatography for 971 determination of lipophilicity, Curr. Comput. Aided. Drug Des. 2 (2006) 341-352. 972 doi:10.2174/157340906778992319. open in new tab
  120. S. Bocian, B. Buszewski, Comparison of retention properties of stationary phases imitated cell 974 membrane in RP HPLC, J. Chromatogr. B. 990 (2015) 198-202. 975 doi:10.1016/j.jchromb.2015.03.033. open in new tab
  121. K. Valko, C.M. Du, C.D. Bevan, D.P. Reynolds, M.H. Abraham, Rapid-gradient HPLC method 977 for measuring drug interactions with immobilised artificial membrane: comparison with other 978 lipophilicity measures, J. Pharm. Sci. 89 (2000) 1085-1095. doi:10.1002/1520- 979 6017(200008)89:8<1085::AID-JPS13>3.0.CO;2-N. open in new tab
  122. K.L. Valko, S.P. Teague, C. Pidgeon, In vitro membrane binding and protein binding (IAM 981 open in new tab
  123. MB/PB technology) to estimate in vivo distribution: applications in early drug discovery, 982 open in new tab
  124. ADMET DMPK. 5 (2017) 14-38. doi:10.5599/admet.5.1.373. open in new tab
  125. Z. Qi, S. Han, Z. Wu, F. Chen, X. Cao, H. Lian, L. Mao, Retention prediction and 984 hydrophobicity measurement of weakly basic xompounds in reversed-phase liquid 985 chromatography using ammonia and triethylamine as ion-suppressors, Curr. Anal. Chem. 10 986 (2013) 172-181. doi:10.2174/1573411011410010016. open in new tab
  126. S.-Y. Han, X. Ming, Z.-C. Qi, D. Sheng, H.-Z. Lian, Retention prediction and hydrophobicity 988 estimation of weak acidic compounds by reversed-phase liquid chromatography using acetic 989 and perchloric acids as ion suppressors, Anal. Bioanal. Chem. 398 (2010) 2731-2743. 990 doi:10.1007/s00216-010-4173-y. open in new tab
  127. J.J. Fernández-Navarro, J.R. Torres-Lapasió, M.J. Ruiz-Ángel, M.C. García-Álvarez-Coque, 1- open in new tab
  128. R. Kaliszan, M.P. Marszałł, M.J. Markuszewski, T. Bączek, J. Pernak, Suppression of 996 deleterious effects of free silanols in liquid chromatography by imidazolium tetrafluoroborate 997 ionic liquids, J. Chromatogr. A. 1030 (2004) 263-271. doi:10.1016/j.chroma.2003.09.020. 998 open in new tab
  129. C. Giaginis, S. Theocharis, A. Tsantili-Kakoulidou, Octanol/water partitioning simulation by 999 reversed-phase high performance liquid chromatography for structurally diverse acidic drugs: 1000 Effect of n-octanol as mobile phase additive, J. Chromatogr. A. 1166 (2007) 116-125. 1001 doi:10.1016/j.chroma.2007.08.004. open in new tab
  130. A. Pyka, A. Kazimierczak, D. Gurak, Utilization of reversed-phase TLC and topological indices 1003 to the lipophilicity investigations of naproxen, Pharm. Methods. 4 (2013) 16-20. 1004 doi:10.1016/J.PHME.2013.05.001. open in new tab
  131. M. Dąbrowska, M. Starek, Ł. Komsta, P. Szafrański, A. Stasiewicz-Urban, W. Opoka, 1006 open in new tab
  132. Assessment of the chromatographic lipophilicity of eight cephalosporins on different stationary 1007 phases, Eur. J. Pharm. Sci. 101 (2017) 115-124. doi:10.1016/J.EJPS.2017.01.034. open in new tab
  133. A.H. Rageh, N.N. Atia, H.M. Abdel-Rahman, Lipophilicity estimation of statins as a decisive 1009 physicochemical parameter for their hepato-selectivity using reversed-phase thin layer 1010 chromatography, J. Pharm. Biomed. Anal. 142 (2017) 7-14. doi:10.1016/J.JPBA.2017.04.037. 1011 open in new tab
  134. S.C. Cobzac, D. Casoni, C. Sarbu, Lipophilicity of Amine Neurotransmitter Precursors, 1012 open in new tab
  135. Metabolites and Related Drugs Estimated on Various TLC Plates, J. Chromatogr. Sci. 52 1013 (2014) 1095-1103. doi:10.1093/chromsci/bmt155. open in new tab
  136. U. Hubicka, B. Żuromska-Witek, Ł. Komsta, J. Krzek, Lipophilicity study of fifteen 1015 fluoroquinolones by reversed-phase thin-layer chromatography, Anal. Methods. 7 (2015) 1016 3841-3848. doi:10.1039/C4AY02203C. open in new tab
  137. C. Onişor, M. Poša, S. Kevrešan, K. Kuhajda, C. Sârbu, Estimation of chromatographic 1018 lipophilicity of bile acids and their derivatives by reversed-phase thin layer chromatography, J. open in new tab
  138. Sep. Sci. 33 (2010) 3110-3118. doi:10.1002/jssc.200900879. open in new tab
  139. S. Šegan, I. Opsenica, M. Zlatović, D. Milojković-Opsenica, B. Šolaja, Quantitative structure 1021 retention/activity relationships of biologically relevant 4-amino-7-chloroquinoline based 1022 compounds, J. Chromatogr. B. 1012-1013 (2016) 144-152. 1023 doi:10.1016/J.JCHROMB.2016.01.033. open in new tab
  140. C. Eadsforth, C. Adams, T. Austin, T. Corry, S. Forbes, S. Harris, Validation of an HPLC 1025 method for determining log Pow values of surfactants, Tenside Surf. Det. 51 (2014) 230-239. 1026 doi:10.3139/113.110303. open in new tab
  141. M. Grover, M. Gulati, B. Singh, S. Singh, RP-HPLC determination of lipophilicity of 22 open in new tab
  142. penicillins, their correlation with reported values and establishment of quantitative structure-log 1029 open in new tab
  143. Kw relationships, QSAR Comb. Sci. 24 (2005) 639-648. doi:10.1002/qsar.200430902. open in new tab
  144. S.K. Sahu, G.G. Pandit, Estimation of octanol-water partition coefficients for polycylic aromatic 1031 hydrocarbons using reverse-phase HPLC, J. Liq. Chromatogr. Relat. Technol. 26 (2003) 135- 1032 146. doi:10.1081/JLC-120017158. open in new tab
  145. S. Griffin, S.G. Wyllie, J. Markham, Determination of octanol-water partition coefficient for 1034 terpenoids using reversed-phase high-performance liquid chromatography, J. Chromatogr. A. 1035 864 (1999) 221-228. doi:10.1016/S0021-9673(99)01009-2. open in new tab
  146. S. Han, J. Qiao, Y. Zhang, L. Yang, H. Lian, X. Ge, H. Chen, Determination of n-octanol/water 1037 partition coefficient for DDT-related compounds by RP-HPLC with a novel dual-point retention 1038 time correction, Chemosphere. 83 (2011) 131-136. doi:10.1016/j.chemosphere.2011.01.013. open in new tab
  147. I.A. Sima, A. Kot-Wasik, A. Wasik, J. Namieśnik, C. Sârbu, Assessment of lipophilicity indices 1044 derived from retention behavior of antioxidant compounds in RP-HPLC, Molecules. 22 (2017) 1045 1-9. doi:10.3390/molecules22040550. open in new tab
  148. M. Koba, M. Belka, T. Ciesielski, T. Bączek, Determination of lipophilicity for antitumor 1047 acridinone derivatives supported by gradient high-performance liquid chromatography method, 1048 open in new tab
  149. Cent. Eur. J. Chem. 10 (2012) 216-223. doi:10.2478/s11532-011-0131-6. open in new tab
  150. C. Sârbu, R. Domnica, N. Cu-Briciu, D. Casoni, A. Kot-Wasik, A. Wasik, J. Namieśnik, 1050 open in new tab
  151. Chromatographic lipophilicity determination using large volume injections of the solvents non- 1051 miscible with the mobile phase, J. Chromatogr. A. 1266 (2012) 53-60. 1052 doi:10.1016/j.chroma.2012.10.007. open in new tab
  152. D.P. Nowotnik, T. Feld, A.D. Nunn, Examination of some reversed-phase high-performance 1054 liquid chromatography systems for the determination of lipophilicity, J. Chromatogr. 630 (1993) 1055 105-115. doi:10.1016/0021-9673(93)80445-E. open in new tab
  153. W.J. Lambert, L.A. Wright, J.K. Stevens, Development of a preformulation lipophilicity screen 1057 utilizing a C-18-derivatized polystyrene-divinylbenzene high-performance liquid 1058 chromatographic (HPLC) column, Pharm. Res. 7 (1990) 577-586. 1059 doi:10.1023/A:1015857925630. open in new tab
  154. S. Rezaee, a Khalaj, N. Adibpour, M. Saffary, Correlation between lipophilicity and 1061 antimicrobial activity of some 2-(4-substituted phenyl)-3 (2H)-isothiazolones, DARU J. Pharm.
  155. Sci. 17 (2009) 256-263. open in new tab
  156. G. Ermondi, F. Catalano, M. Vallaro, I. Ermondi, M.P. Camacho Leal, L. Rinaldi, S. Visentin, 1064 open in new tab
  157. G. Caron, Lipophilicity of amyloid β-peptide 12-28 and 25-35 to unravel their ability to promote 1065 hydrophobic and electrostatic interactions, Int. J. Pharm. 495 (2015) 179-185. 1066 doi:10.1016/j.ijpharm.2015.08.075. open in new tab
  158. G. Caron, M. Vallaro, G. Ermondi, G.H. Goetz, Y.A. Abramov, L. Philippe, M. Shalaeva, A fast 1068 chromatographic method for estimating lipophilicity and ionization in nonpolar membrane-like 1069 environment, Mol. Pharm. 13 (2016) 1100-1110. doi:10.1021/acs.molpharmaceut.5b00910. 1070 open in new tab
  159. M. Ilijaš, I. Malnar, V. Gabelica Marković, V. Stepanić, Study of lipophilicity and membrane 1071 partition of 4-hydroxycoumarins by HPLC and PCA, J. Pharm. Biomed. Anal. 76 (2013) 104- 1072 111. doi:10.1016/j.jpba.2012.11.043. open in new tab
  160. F. Barbato, V. Cirocco, L. Grumetto, M. Immacolata La Rotonda, Comparison between 1074 immobilized artificial membrane (IAM) HPLC data and lipophilicity in n-octanol for quinolone 1075 antibacterial agents, Eur. J. Pharm. Sci. 31 (2007) 288-297. doi:10.1016/j.ejps.2007.04.003. 1076 open in new tab
  161. F. Tsopelas, A. Tsantili-Kakoulidou, M. Ochsenkühn-Petropoulou, Biomimetic chromatographic 1077 analysis of selenium species: Application for the estimation of their pharmacokinetic 1078 properties, Anal. Bioanal. Chem. 397 (2010) 2171-2180. doi:10.1007/s00216-010-3624-9. open in new tab
  162. M. Chrysanthakopoulos, C. Giaginis, A. Tsantili-Kakoulidou, Retention of structurally diverse 1080 drugs in human serum albumin chromatography and its potential to simulate plasma protein 1081 binding, J. Chromatogr. A. 1217 (2010) 5761-5768. doi:10.1016/j.chroma.2010.07.023. 1082 open in new tab
  163. L. Grumetto, C. Carpentiero, F. Barbato, Lipophilic and electrostatic forces encoded in IAM- 1083 HPLC indexes of basic drugs: Their role in membrane partition and their relationships with open in new tab
  164. F. Pehourcq, C. Jarry, B. Bannwarth, Potential of immobilized artificial membrane 1086 chromatography for lipophilicity determination of arylpropionic acid non-steroidal anti- 1092 open in new tab
  165. K. Valkó, L.R. Snyder, J.L. Glajch, Retention in reversed-phase liquid chromatography as a 1093 function of mobile-phase composition, J. Chromatogr. A. 656 (1993) 501-520. 1094 doi:10.1016/0021-9673(93)80816-Q. open in new tab
  166. S. Han, C. Liang, J. Qiao, H. Lian, X. Ge, H. Chen, A novel evaluation method for extrapolated 1096 retention factor in determination of n -octanol/water partition coefficient of halogenated organic 1097 pollutants by reversed-phase high performance liquid chromatography, Anal. Chim. Acta. 713 1098 (2012) 130-135. doi:10.1016/j.aca.2011.11.020. open in new tab
  167. K. Valkó, C. Bevan, D. Reynolds, Chromatographic hydrophobicity index by fast-gradient RP- 1100 HPLC: A high-throughput alternative to log P/log D, Anal. Chem. 69 (1997) 2022-2029. 1101 doi:10.1021/ac961242d. open in new tab
  168. K. Valkó, P. Slégel, New chromatographic hydrophobicity index (φ0) based on the slope and 1103 the intercept of the log k′ versus organic phase concentration plot, J. Chromatogr. A. 631 1104 (1993) 49-61. doi:10.1016/0021-9673(93)80506-4. open in new tab
  169. J.D. Krass, B. Jastorff, H.G. Genieser, Determination of lipophilicity by gradient elution high- 1106 performance liquid chromatography, Anal. Chem. 69 (1997) 2575-81. doi:10.1021/ac961246i. 1107 open in new tab
  170. G. Camurri, A. Zaramella, High-throughput liquid chromatography/mass spectrometry method 1108 for the determination of the chromatographic hydrophobicity index, Anal. Chem. 73 (2001) 1109 3716-3722. doi:10.1021/ac001388j. open in new tab
  171. P. Wiczling, M.J. Markuszewski, M. Kaliszan, R. Kaliszan, pH/organic solvent double-gradient 1111 reversed-phase HPLC, Anal. Chem. 77 (2005) 449-458. doi:10.1021/ac049092r. open in new tab
  172. R.L.C. Voeten, I.K. Ventouri, R. Haselberg, G.W. Somsen, Capillary Electrophoresis: Trends 1113 and Recent Advances, Anal. Chem. 90 (2018) 1464-1481. 1114 doi:10.1021/acs.analchem.8b00015. open in new tab
  173. S. El Deeb, H. Wätzig, D. Abd El-Hady, C. Sänger-van de Griend, G.K.E. Scriba, Recent 1116 advances in capillary electrophoretic migration techniques for pharmaceutical analysis (2013- 1117 2015), Electrophoresis. 37 (2016) 1591-1608. doi:10.1002/elps.201600058. open in new tab
  174. D. Erickson, Electroosmotic Flow (DC), in: Encycl. Microfluid. Nanofluidics, Springer US, 1119 open in new tab
  175. Boston, MA, 2014: pp. 1-11. doi:10.1007/978-3-642-27758-0_446-2. open in new tab
  176. S. Kanchi, S. Sagrado, M.I. Sabela, K. Bisetty, Capillary Electrophoresis : Trends and 1121 open in new tab
  177. Developments in Pharmaceutical Research, Pan Stanford Publishing Pte. Ltd., USA, 2017. 1122 doi:10.4032/9781315225388. open in new tab
  178. D.A. Skoog, F.J. Holler, S.R. Crouch, Principles of instrumental analysis, Brooks Cole, 2007. 1124 open in new tab
  179. V. Mantovani, F. Galeotti, F. Maccari, N. Volpi, Recent advances in capillary electrophoresis 1125 separation of monosaccharides, oligosaccharides, and polysaccharides, Electrophoresis. 39 1126 (2018) 179-189. doi:10.1002/elps.201700290. open in new tab
  180. V. Kašička, Recent developments in capillary and microchip electroseparations of peptides 1128 (2015-mid 2017), Electrophoresis. 39 (2018) 209-234. doi:10.1002/elps.201700295. open in new tab
  181. K.-S. Wong, J. Kenseth, R. Strasburg, Validation and long-term assessment of an approach innovations focusing on practical aspects, Electrophoresis. 34 (2013) 141-158. 1137 doi:10.1002/elps.201200349. open in new tab
  182. W.A. Wan Ibrahim, D. Hermawan, M.N. Hasan, H.Y. Aboul Enein, M.M. Sanagi, Rapid 1139 Estimation of Octanol-Water Partition Coefficient for Triazole Fungicides by MEKC with 1140 Sodium Deoxycholate as Surfactant, Chromatographia. 68 (2008) 415-419. 1141 doi:10.1365/s10337-008-0721-4. open in new tab
  183. J. Østergaard, Application of retention factors in affinity electrokinetic chromatography and 1143 capillary electrophoresis., Anal. Sci. 23 (2007) 489-92. doi:10.2116/analsci.23.489. 1144 open in new tab
  184. H. Yang, Y. Ding, J. Cao, P. Li, Twenty-one years of microemulsion electrokinetic 1145 chromatography (1991-2012): A powerful analytical tool, Electrophoresis. 34 (2013) 1273- 1146 1294. doi:10.1002/elps.201200494. open in new tab
  185. R. Ryan, K. Altria, E. McEvoy, S. Donegan, J. Power, A review of developments in the 1148 methodology and application of microemulsion electrokinetic chromatography, Electrophoresis. 1149 34 (2013) 159-177. doi:10.1002/elps.201200375. open in new tab
  186. Z. Xia, J. Yang, L. Li, F. Yang, X. Jiang, Determination of Octanol-Water Partition Coefficients 1151 by MEEKC Based on Peak-Shift Assay, Chromatographia. 72 (2010) 495-501. 1152 doi:10.1365/s10337-010-1666-y. open in new tab
  187. A. Fernández-Pumarega, S. Amézqueta, E. Fuguet, M. Rosés, Feasibility of the estimation of 1154 octanol-water distribution coefficients of acidic drugs by microemulsion electrokinetic 1155 chromatography, ADMET DMPK. 6 (2018) 55. doi:10.5599/admet.6.1.510. open in new tab
  188. K. Giringer, H.U. Holtkamp, S. Movassaghi, W.D.J. Tremlett, N.Y.S. Lam, M. Kubanik, C.G. 1157 open in new tab
  189. Hartinger, Analysis of ruthenium anticancer agents by MEEKC-UV and MEEKC-ICP-MS: 1158 Impact of structural motifs on lipophilicity and biological activity, Electrophoresis. 39 (2018) 1159 1201-1207. doi:10.1002/elps.201700443. open in new tab
  190. Y. Ishihama, Y. Oda, K. Uchikawa, N. Asakawa, Evaluation of Solute Hydrophobicity by 1161 open in new tab
  191. Microemulsion Electrokinetic Chromatography, Anal. Chem. 67 (1995) 1588-1595. 1162 doi:10.1021/ac00105a018. open in new tab
  192. R.J. Pascoe, J.A. Masucci, J.P. Foley, Investigation of vesicle electrokinetic chromatography 1164 as anin vitro assay for the estimation of intestinal permeability of pharmaceutical drug 1165 candidates, Electrophoresis. 27 (2006) 793-804. doi:10.1002/elps.200500647. open in new tab
  193. L. Jiang, Y. Cao, X. Ni, M. Zhang, G. Cao, Influences of the concentration and the molar ratio 1167 of mixed surfactants on the performance of vesicle pseudostationary phase, Electrophoresis. 1168 39 (2018) 1794-1801. doi:10.1002/elps.201800023. open in new tab
  194. W.L. Klotz, M.R. Schure, J.P. Foley, Rapid estimation of octanol-water partition coefficients 1170 using synthesized vesicles in electrokinetic chromatography, J. Chromatogr. A. 962 (2002) 1171 207-219. doi:10.1016/S0021-9673(02)00352-7. open in new tab
  195. M. Hong, B.S. Weekley, S.J. Grieb, J.P. Foley, Electrokinetic chromatography using 1173 thermodynamically stable vesicles and mixed micelles formed from oppositely charged 1174 surfactants, Anal. Chem. 70 (1998) 1394-1403. doi:10.1021/ac970730y. open in new tab
  196. Z. Jiang, J. Reilly, B. Everatt, A method for rapidly predicting drug tissue distribution using 1176 surfactant vesicle electrokinetic chromatography, Electrophoresis. 29 (2008) 3674-3684. open in new tab
  197. G. Bouchard, P.A. Carrupt, B. Testa, V. Gobry, H.H. Girault, The apparent lipophilicity of 1184 quaternary ammonium ions is influenced by Galvani potential difference, not ion-pairing: A 1185 cyclic voltammetry study, Pharm. Res. 18 (2001) 702-708. doi:10.1023/A:1011001914685. 1186 open in new tab
  198. G. Caron, F. Reymond, P.-A. Carrupt, H.H. Girault, B. Testa, Combined molecular lipophilicity 1187 descriptors and their role in understanding intramolecular effects, Pharm. Sci. Technolo. open in new tab
  199. Today. 2 (1999) 327-335. doi:10.1016/S1461-5347(99)00180-7. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 273 times

Recommended for you

Meta Tags