Abstract
In this work, BaxSr1−xTi1−yFeyO3−δ perovskite-based mixed conducting ceramics (for x = 0, 0.2, 0.5 and y = 0.1, 0.8) were synthesized and studied. The structural analysis based on the X-ray diffraction results showed significant changes in the unit cell volume and Fe(Ti)–O distance as a function of Ba content. The morphology of the synthesized samples studied by means of scanning electron microscopy has shown different microstructures for different contents of barium and iron. Electrochemical impedance spectroscopy studies of transport properties in a wide temperature range in the dry- and wet air confirmed the influence of barium cations on charge transport in the studied samples. The total conductivity values were in the range of 10−3 to 100 S cm−1 at 600 °C. Depending on the barium and iron content, the observed change of conductivity either increases or decreases in humidified air. Thermogravimetric measurements have shown the existence of proton defects in some of the analysed materials. The highest observed molar proton concentration, equal to 5.0 × 10−2 mol mol−1 at 300 °C, was obtained for Ba0.2Sr0.8Ti0.9Fe0.1O2.95. The relations between the structure, morphology and electrical conductivity were discussed.
Citations
-
6
CrossRef
-
0
Web of Science
-
6
Scopus
Authors (9)
Cite as
Full text
- Publication version
- Accepted or Published Version
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
RSC Advances
no. 11,
pages 19570 - 19578,
ISSN: 2046-2069 - Language:
- English
- Publication year:
- 2021
- Bibliographic description:
- Miruszewski T., Dzierzgowski K., Winiarz P., Jaworski D., Wiciak-Pawłowska K., Skubida W., Wachowski S., Mielewczyk-Gryń A., Gazda M.: Structure and transport properties of triple-conducting BaxSr1−xTi1−yFeyO3−δ oxides// RSC Advances -Vol. 11,iss. 32 (2021), s.19570-19578
- DOI:
- Digital Object Identifier (open in new tab) 10.1039/d0ra10048j
- Sources of funding:
-
- Project Triple conducting oxides
- Verified by:
- Gdańsk University of Technology
seen 184 times
Recommended for you
Charge Transport in High-Entropy Oxides
- W. Skubida,
- D. Jaworski,
- A. Mielewczyk-Gryń
- + 5 authors