The Concept of Geodetic Analyses of the Measurement Results Obtained by Hydrostatic Leveling - Publication - Bridge of Knowledge

Search

The Concept of Geodetic Analyses of the Measurement Results Obtained by Hydrostatic Leveling

Abstract

The article discusses the issue of hydrostatic leveling. Its application is presented in structural health monitoring systems in order to determine vertical displacements of controlled points. Moreover, the article includes a complete computation scheme that utilizes the estimation from observation differences, allowing the elimination of the influence of individual sensors’ systematic errors. The authors suggest two concepts of processing the measurement results depending on the sensors’ connection method. Additionally, the second concept is extended by the elements allowing the prediction of the displacements by means of Kalman filtering.

Citations

  • 3

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Cite as

Full text

download paper
downloaded 26 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Geosciences no. 9, pages 1 - 12,
ISSN:
Language:
English
Publication year:
2019
Bibliographic description:
Kamiński W., Makowska K.: The Concept of Geodetic Analyses of the Measurement Results Obtained by Hydrostatic Leveling// Geosciences -Vol. 9,iss. 10 (2019), s.1-12
DOI:
Digital Object Identifier (open in new tab) 10.3390/geosciences9100406
Bibliography: test
  1. Becker, J.M. Levelling over the Öresund Bridge at the Millimeter Level. In Proceedings of the FIG XXII International Congress, Washington, DC, USA, 19-26 April 2002. open in new tab
  2. Hong-Nan, L.; Dong-Sheng, L.; Liang, R.; Ting-Hua, Y.; Zi-Guang, J.; Kun-Peng, L. Structural health monitoring of innovative civil engineering structures in Mainland China. Struct. Monit. Maint. 2016, 3, 1-31.
  3. Miśkiewicz, M.; Meronk, B.; Brzozowski, T.; Wilde, K. Monitoring system of the road embankment. Balt. J. Road Bridge Eng. 2017, 12, 218-224. open in new tab
  4. Zhi Zheng, Y. Application of hydrostatic leveling system in metro monitoring for construction deep excavation above shield tunnel. Appl. Mech. Mater. 2013, 333-335, 1509-1513.
  5. Wei, F.Q.; Rivkin, L.; Wrulich. A. Experiences with the hydrostatic levelling system at the SLS. In Proceedings of EPAC 2004, Lucerne, Switzerland, 5-9 July 2004; pp. 1651-1653. open in new tab
  6. Morishita, T.; Ikegami, M. The slow-ground-motion monitoring based on the hydrostatic leveling system in J-PARC linac. Nucl. Instrum. Methods Phys. Res. A 2009, 602, 364-371. open in new tab
  7. Zhang, X.; Zhang, Y.; Zhang, L.; Qiu, G.; Wei, D. Power transmission tower monitoring with hydrostatic leveling system: measurement refinement and performance evaluation. J. Sens. 2018, 2018, 1-12. open in new tab
  8. Martin, D. The European Synchrotron Radiation Facility hydrostatic leveling system-twelve years experience with a large scale hydrostatic leveling system. In Proceedings of the 7th International Workshop on Accelerator Alignment, Hyogo, Japan, 11-14 November 2002; pp. 308-326.
  9. Boerez, J.; Hinderer, J.; Rivera, L.; Jones, M. Analysis and modeling of the effect of tides on the hydrostatic leveling system at CERN. Surv. Rev. 2012, 44, 256-264. open in new tab
  10. Wilde, K.; Meronk, B.; Groth, M.; Miśkiewicz, M. Monitoring konstrukcji z zastosowaniem niwelacji hydrostatycznej. In Proceedings of the XXVII Konferencja Naukowo-Techniczna: Awarie budowlane, Międzyzdroje, Poland, 20-23 May 2015; pp. 277-284.
  11. Bauman, R. P.; Schwaneberg, R. Interpretation of Bernoulli' Equation. Phys. Teach. 1994, 32, 478-488. open in new tab
  12. Filipiak-Kowszyk, D.; Kamiński, W. The application of Kalman filtering to predict vertical rail axis displacements of the overhead crane being a component of seaport transport structure. Pol. Marit. Res. 2016, 2, 64-70. open in new tab
  13. Gamse, S. Dynamic modelling of displacements on an embankment dam using the Kalman filter. J. Spat. Scienc. 2018, 63, 3-21. open in new tab
  14. Jäger, R.; González, F. GNSS/LPS Based Online Control and Alarm System (GOCA) -Mathematical Models and Technical Realization of a System for Natural and Geotechnical Deformation Monitoring and Hazard Prevention. In Geodetic Deformation Monitoring: From Geophysical to Engineering Roles, Proceedings of IAG SYMPOSIA; Sanso, F., Gil, A.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; volume 131, pp. 293-303. open in new tab
  15. Yang, Y.; Gao, W. An optimal adaptive kalman filter. J. Geod. 2006, 80, 177-183. open in new tab
  16. Yalçinkaya, M.; Bayrak, T. Comparison of static, kinematic and dynamic geodetic deformation models for Kutlugün Landslide in Northeastern Turkey. Nat. Hazards 2005, 34, 91-110. open in new tab
Verified by:
Gdańsk University of Technology

seen 79 times

Recommended for you

Meta Tags