The dispersive micro-solid phase extraction method for MS-based lipidomics of human breast milk* - Publication - Bridge of Knowledge

Search

The dispersive micro-solid phase extraction method for MS-based lipidomics of human breast milk*

Abstract

A simple and rapid microextraction method ensuring high lipidome coverage was developed for liquid chromatography mass spectrometry (LC-MS)-based lipidomics of human breast milk. The dispersive microsolid phase extraction (D-µ-SPE) technique, coupled with the design of experiment (DoE) method, enabled the study of the influence of several conditions (desorption solvent, stationary phase ratio, and sorption and desorption time) on the lipid extraction process of various lipid classes. The D-µ-SPE-based method, which used a mixture of C18 and zirconia-coated silica gel as the sorbent, allowed for the extraction of a wide range lipid classes characterized by different concentration levels. The developed method simplified the extraction procedure for lipidomics without loss of good reproducibility (70% of the MFs had peak volume %RSD <20% for all the tested stationary phases). The highest lipidome coverage was achieved when 100 µL of the human breast milk (HBM) sample was extracted using 27 mg of C18 mixed with 3 mg of zirconia-coated silica gel as the sorbent and methanol:2-propanol: ammonium hydroxide (14:81:5 v/v/v) mixture as the desorption solvent. The sorption and desorption time did not influence the number of extracted molecular features. The advantages of the present method over the traditional SPE and liquid-liquid extraction (LLE) commonly used in lipidomics are the possibility of mixing sorbents with various sorption mechanisms, which ensures high lipidome coverage, and the use of a small number of materials, including the sorbent and organic solvent.

Citations

  • 1 1

    CrossRef

  • 0

    Web of Science

  • 1 0

    Scopus

Cite as

Full text

download paper
downloaded 69 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
MICROCHEMICAL JOURNAL no. 152,
ISSN: 0026-265X
Language:
English
Publication year:
2020
Bibliographic description:
Bakhytkyzy I., Hewelt-Belka W., Kot-Wasik A.: The dispersive micro-solid phase extraction method for MS-based lipidomics of human breast milk*// MICROCHEMICAL JOURNAL -Vol. 152, (2020), s.104269-
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.microc.2019.104269
Bibliography: test
  1. M.R. Wenk, Lipidomics: new tools and applications, Cell 143 (2010) 888-895, https://doi.org/10.1016/j.cell.2010.11.033. open in new tab
  2. A. Villaseñor, I. Garcia-Perez, A. Garcia, J.M. Posma, M. Fernández-López, A.J. Nicholas, N. Modi, E. Holmes, C. Barbas, Breast milk metabolome character- ization in a single-phase extraction, multiplatform analytical approach, Anal. Chem. 86 (2014) 8245-8252, https://doi.org/10.1021/ac501853d. open in new tab
  3. J. Godzien, M. Ciborowski, E.G. Armitage, I. Jorge, E. Camafeita, E. Burillo, J.L. Martín-Ventura, F.J. Rupérez, J. Vázquez, C. Barbas, A single in-vial dual ex- traction strategy for the simultaneous lipidomics and proteomics analysis of HDL and LDL fractions, J. Proteome. Res. 15 (2016) 1762-1775, https://doi.org/10. 1021/acs.jproteome.5b00898. open in new tab
  4. K. Sandra, A. dos, S. Pereira, G. Vanhoenacker, F. David, P. Sandra, Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry, J. Chromatogr. A. 1217 (2010) 4087-4099, https://doi.org/10. 1016/j.chroma.2010.02.039. open in new tab
  5. M.A. López-Bascón, M. Calderón-Santiago, J. Sánchez-Ceinos, A. Fernández-Vega, R. Guzmán-Ruiz, J. López-Miranda, M.M. Malagon, F. Priego-Capote, Influence of sample preparation on lipidomics analysis of polar lipids in adipose tissue, Talanta 177 (2018) 86-93, https://doi.org/10.1016/j.talanta.2017.09.017. open in new tab
  6. N. Reyes-Garcés, E. Gionfriddo, Recent developments and applications of solid phase microextraction as a sample preparation approach for mass-spectrometry- based metabolomics and lipidomics, TrAC Trends Anal. Chem. 113 (2019) 172-181, https://doi.org/10.1016/J.TRAC.2019.01.009. open in new tab
  7. C. Pizarro, I. Arenzana-Rámila, N. Pérez-del-Notario, P. Pérez-Matute, J.-.M. González-Sáiz, Plasma lipidomic profiling method based on ultrasound ex- traction and liquid chromatography mass spectrometry, Anal. Chem. 85 (2013) 12085-12092, https://doi.org/10.1021/ac403181c. open in new tab
  8. F. González-Illán, G. Ojeda-Torres, L.M. Díaz-Vázquez, O. Rosario, Detection of fatty acid ethyl esters in skin surface lipids as biomarkers of ethanol consumption in alcoholics, social drinkers, light drinkers, and teetotalers using a methodology based on microwave-assisted extraction followed by solid-phase microextraction and gas chromatography-mass spectrometry. J. Anal. Toxicol. 35 (2011) 232-237 http://www.ncbi.nlm.nih.gov/pubmed/21513617 accessed August 31, 2018. open in new tab
  9. T. Uchikata, A. Matsubara, E. Fukusaki, T. Bamba, High-throughput phospholipid profiling system based on supercritical fluid extraction-supercritical fluid chro- matography/mass spectrometry for dried plasma spot analysis, J. Chromatogr. A. 1250 (2012) 69-75, https://doi.org/10.1016/J.CHROMA.2012.06.031. open in new tab
  10. G. Bang, Y.H. Kim, J. Yoon, Y.J. Yu, S. Chung, J.A. Kim, On-chip lipid extraction using superabsorbent polymers for mass spectrometry, Anal. Chem. 89 (2017) 13365-13373, https://doi.org/10.1021/acs.analchem.7b03547. open in new tab
  11. W. Hewelt-Belka, D. Garwolińska, M. Belka, T. Bączek, J. Namieśnik, A. Kot-Wasik, A new dilution-enrichment sample preparation strategy for expanded metabolome monitoring of human breast milk that overcomes the simultaneous presence of low- and high-abundance lipid species, Food Chem. (2019), https://doi.org/10.1016/j. foodchem.2019.03.001. open in new tab
  12. N.J. Andreas, M.J. Hyde, M. Gomez-Romero, M.A. Lopez-Gonzalvez, A. Villaseñor, A. Wijeyesekera, C. Barbas, N. Modi, E. Holmes, I. Garcia-Perez, Multiplatform characterization of dynamic changes in breast milk during lactation, Electrophoresis 36 (2015) 2269-2285, https://doi.org/10.1002/elps.201500011. open in new tab
  13. W.-H. Tsai, H.-Y. Chuang, H.-H. Chen, J.-J. Huang, H.-C. Chen, S.-H. Cheng, T.- C. Huang, Application of dispersive liquid-liquid microextraction and dispersive micro-solid-phase extraction for the determination of quinolones in swine muscle by high-performance liquid chromatography with diode-array detection, Anal. Chim. Acta. 656 (2009) 56-62, https://doi.org/10.1016/j.aca.2009.10.008. open in new tab
  14. W.-H. Tsai, T.-C. Huang, J.-J. Huang, Y.-H. Hsue, H.-Y. Chuang, Dispersive solid- phase microextraction method for sample extraction in the analysis of four tetra- cyclines in water and milk samples by high-performance liquid chromatography with diode-array detection, J. Chromatogr. A. 1216 (2009) 2263-2269, https://doi. org/10.1016/j.chroma.2009.01.034. open in new tab
  15. E.M. Reyes-Gallardo, R. Lucena, S. Cárdenas, M. Valcárcel, Magnetic nanoparticles- nylon 6 composite for the dispersive micro solid phase extraction of selected polycyclic aromatic hydrocarbons from water samples, J. Chromatogr. A. 1345 (2014) 43-49, https://doi.org/10.1016/J.CHROMA.2014.04.033. open in new tab
  16. W. Hewelt-Belka, J. Nakonieczna, M. Belka, T. Baczek, J. Namieśnik, A. Kot-Wasik, Comprehensive methodology for Staphylococcus aureus lipidomics by liquid chromatography and quadrupole time-of-flight mass spectrometry, J. Chromatogr. A. (2014) 1362, https://doi.org/10.1016/j.chroma.2014.08.020. open in new tab
  17. A. López-López, M. López-Sabater, C. Campoy-Folgoso, M. Rivero-Urgell, A. Castellote-Bargalló, Fatty acid and sn-2 fatty acid composition in human milk from Granada (Spain) and in infant formulas, Eur. J. Clin. Nutr. 56 (2002) 1242-1254, https://doi.org/10.1038/sj.ejcn.1601470. open in new tab
  18. N. Blaas, C. Schüürmann, N. Bartke, B. Stahl, H.-.U. Humpf, Structural profiling and quantification of sphingomyelin in human breast milk by HPLC-MS/MS, J. Agric. Food Chem. 59 (2011) 6018-6024, https://doi.org/10.1021/jf200943n. open in new tab
  19. M.A. Masood, C. Yuan, J.K. Acharya, T.D. Veenstra, J. Blonder, Quantitation of ceramide phosphorylethanolamines containing saturated and unsaturated sphin- goid base cores, Anal. Biochem. 400 (2010) 259-269, https://doi.org/10.1016/j. ab.2010.01.033. open in new tab
  20. X.L. Pan, T. Izumi, Variation of the ganglioside compositions of human milk, cow's milk and infant formulas, Early Hum. Dev. 57 (2000) 25-31, https://doi.org/10. 1016/S0378-3782(99)00051-1. open in new tab
  21. L. Ma, A.K.H. MacGibbon, H.J.B. Jan Mohamed, S. Loy, A. Rowan, P. McJarrow, B.Y. Fong, Determination of ganglioside concentrations in breast milk and serum from Malaysian mothers using a high performance liquid chromatography-mass spectrometry-multiple reaction monitoring method, Int. Dairy J. 49 (2017) 62-71, https://doi.org/10.1016/j.idairyj.2015.05.006. open in new tab
  22. C. Jiang, B. Ma, S. Song, O.-M. Lai, L.-Z. Cheong, Fingerprinting of phospholipid molecular species from human milk and infant formula using HILIC-ESI-IT-TOF-MS and discriminatory analysis by principal component analysis, J. Agric. Food Chem. 66 (2018) 7131-7138, https://doi.org/10.1021/acs.jafc.8b01393. open in new tab
  23. J. Jiang, K. Wu, Z. Yu, Y. Ren, Y. Zhao, Y. Jiang, X. Xu, W. Li, Y. Jin, J. Yuan, D. Li, Changes in fatty acid composition of human milk over lactation stages and re- lationship with dietary intake in Chinese women, Food Funct. 7 (2016) 3154-3162, https://doi.org/10.1039/c6fo00304d. open in new tab
  24. B. Koletzko, M. Rodriguez-Palmero, H. Demmelmair, N. Fidler, R. Jensen, T. Sauerwald, Physiological aspects of human milk lipids, Early Hum. Dev. 65 Suppl (2001) S3-S18, https://doi.org/10.1016/S0378-3782(01)00204-3. open in new tab
  25. D. Garwolińska, W. Hewelt-Belka, J. Namieśnik, A. Kot-Wasik, Rapid character- ization of the human breast milk lipidome using a solid-phase microextraction and liquid chromatography-mass spectrometry-based approach, J. Proteome. Res. 16 (2017) 3200-3208, https://doi.org/10.1021/acs.jproteome.7b00195. open in new tab
  26. F. Wei, X. Wang, H. Ma, X. Lv, X. Dong, H. Chen, Rapid profiling and quantification of phospholipid molecular species in human plasma based on chemical derivati- zation coupled with electrospray ionization tandem mass spectrometry, Anal. Chim. Acta. 1024 (2018) 101-111, https://doi.org/10.1016/j.aca.2018.04.012. open in new tab
  27. W.B. Dunn, D. Broadhurst, P. Begley, E. Zelena, S. Francis-Mcintyre, N. Anderson, M. Brown, J.D. Knowles, A. Halsall, J.N. Haselden, A.W. Nicholls, I.D. Wilson, D.B. Kell, R. Goodacre, Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry, Nat. Protoc. 6 (2011) 1060-1083, https://doi.org/10.1038/nprot. 2011.335. open in new tab
  28. D. Broadhurst, R. Goodacre, S.N. Reinke, J. Kuligowski, I.D. Wilson, M.R. Lewis, W.B. Dunn, Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies, Metabolomics 14 (2018) 72, https://doi.org/10.1007/ s11306-018-1367-3. open in new tab
Verified by:
Gdańsk University of Technology

seen 178 times

Recommended for you

Meta Tags