The Influence of Iron Doping on Performance of SrTi1-XFexO3-δ Perovskite Oxygen Electrode for SOFC - Publication - Bridge of Knowledge

Search

The Influence of Iron Doping on Performance of SrTi1-XFexO3-δ Perovskite Oxygen Electrode for SOFC

Abstract

Solid Oxide Fuel Cells (SOFC) are based on electrolytes and mixed ionic and electronic conductivity (MIEC) materials. The need to reduce costs causes an increase in interest of new compounds suitable for operating temperatures between 600 °C and 800 °C. The SrTi1-xFexO3 (STF) perovskite material is a perspective material that could be used for the oxygen electrodes. In this work STF materials with different content of iron (x = 0.35, 0.5 and 0.7) have been evaluated. The paper presents synthesis, sintering properties, paste and layer preparation with preliminary electrical measurements. The results show that the electrical conductivity increases with the addition of iron, whereas the activation energy decreases. Based on these results, the applicability of STF as a potential oxygen electrode was discussed.

Citations

  • 7

    CrossRef

  • 0

    Web of Science

  • 7

    Scopus

Cite as

Full text

download paper
downloaded 48 times
Publication version
Accepted or Published Version
License
Copyright (2019 ECS - The Electrochemical Society)

Keywords

Details

Category:
Articles
Type:
publikacja w in. zagranicznym czasopiśmie naukowym (tylko język obcy)
Published in:
ECS Transactions no. 91, pages 1299 - 1307,
ISSN: 1938-5862
Language:
English
Publication year:
2019
Bibliographic description:
Mroziński A., Molin S., Karczewski J., Kamecki B., Jasiński P.. The Influence of Iron Doping on Performance of SrTi1-XFexO3-δ Perovskite Oxygen Electrode for SOFC. ECS Transactions, 2019, Vol. 91, iss. 1, s.1299-1307
DOI:
Digital Object Identifier (open in new tab) 10.1149/09101.1299ecst
Bibliography: test
  1. T. Chen, G. F. Harrington, K. Sasaki, and N. H. Perry, ECS Trans., 75, 23-31 (2017). open in new tab
  2. A. Mroziński, S. Molin, J. Karczewski, T. Miruszewski, and P. Jasiński, Int. J. Hydrogen Energy, 44, 1827-1838 (2019). open in new tab
  3. R. A. De Souza, J. Fleig, R. Merkle, and J. Maier, Zeitschrift für Met., 94, 218-225 (2013).
  4. R. A. Maier, C. A. Randall, and J. Stevenson, J. Am. Ceram. Soc., 99, 3350-3359 (2016). open in new tab
  5. V. Metlenko, W. Jung, S. R. Bishop, H. L. Tuller, and R. A. De Souza, Phys. Chem. Chem. Phys., 18, 29495-29505 (2016). open in new tab
  6. W. Jung and H. L. Tuller, ECS Trans., 25, 2775-2782 (2009). open in new tab
  7. W. Jung and H. L. Tuller, ECS Trans., 35, 2129-2136 (2011). open in new tab
  8. X. Yu, W. Long, F. Jin, and T. He, Electrochim. Acta, 123, 426-434 (2014) http://dx.doi.org/10.1016/j.electacta.2014.01.020. open in new tab
  9. X. Yu, J. Fan, and L. Xue, Ceram. Int., 40, 13627-13634 (2014). open in new tab
  10. W. Jung and H. L. Tuller, J. Electrochem. Soc., 155, B1194 (2008) http://jes.ecsdl.org/cgi/doi/10.1149/1.2976212. open in new tab
  11. A. Nenning et al., J. Electrochem. Soc., 164, F364-F371 (2017) http://jes.ecsdl.org/lookup/doi/10.1149/2.1271704jes. open in new tab
  12. N. A. Baharuddin, A. Muchtar, M. R. Somalu, N. S. Kalib, and N. F. Raduwan, Int. J. Hydrogen Energy (2018). open in new tab
  13. E. O. Filatova et al., Solid State Ionics, 308, 27-33 (2017) http://dx.doi.org/10.1016/j.ssi.2017.05.016. open in new tab
  14. A. Chrzan, J. Karczewski, M. Gazda, D. Szymczewska, and P. Jasinski, J. Solid State Electrochem., 19, 1807-1815 (2015). open in new tab
Verified by:
Gdańsk University of Technology

seen 129 times

Recommended for you

Meta Tags