The relationship between standard reduction potentials of catechins and biological activities involved in redox control - Publication - Bridge of Knowledge

Search

The relationship between standard reduction potentials of catechins and biological activities involved in redox control

Abstract

Redox homeostasis involves factors that ensure proper function of cells. The excess reactive oxygen species (ROS) leads to oxidative stress and increased risk of oxidative damage to cellular components. In contrast, upon reductive stress, insufficient ROS abundance may result in faulty cell signalling. It may be expected that dietary antioxidants, depending on their standard reduction potentials (E°), will affect both scenarios. In our study, for the first time, we systematically tested the relationship among E°, chemical properties, and biological effects in HT29 cells for a series of structurally different catechins and a major endogenous antioxidant - glutathione (GSH), at both physiological and dietary concentrations. Among chemical antioxidant activity tests, the strongest correlation with E° was seen using a DPPH assay. The values of E° were also highly correlated with cellular antioxidant activity (CAA) values determined in HT29 cells. Our results indicated that physiological concentrations (1-10 µM) of tested catechins stabilized the redox status of cells, which was not exhibited at higher concentrations. This stabilization of redox homeostasis was mirrored by constant, dose and E° independent CAA values, uninhibited growth of HT29 cells, modulation of hydrogen peroxide-induced DNA damage, as well as effects at the genomic level, where either up-regulation of three redox-related genes (ALB, CCL5, and HSPA1A) out of 84 in the array (1 µM) or no effect (10 µM) was observed for catechins. Higher catechin concentrations (over 10 µM) increased CAA values in a dose- and E°-dependent manner, caused cell growth inhibition, but surprisingly did not protect HT29 cells against reactive oxygen species (ROS)-induced DNA fragmentation. In conclusion, dose-dependent effects of dietary antioxidants and biological functions potentially modulated by them may become deregulated upon exposure to excessive doses.

Citations

  • 5 5

    CrossRef

  • 0

    Web of Science

  • 5 4

    Scopus

Cite as

Full text

download paper
downloaded 47 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Redox Biology no. 17, pages 355 - 366,
ISSN: 2213-2317
Language:
English
Publication year:
2018
Bibliographic description:
Baranowska M., Suliborska K., Chrzanowski W., Kusznierewicz B., Namieśnik J., Bartoszek-Pączkowska A.: The relationship between standard reduction potentials of catechins and biological activities involved in redox control// Redox Biology. -Vol. 17, (2018), s.355-366
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.redox.2018.05.005
Bibliography: test
  1. Y. Clement, Can green tea do that? A literature review of the clinical evidence, Prev. Med. 49 (2009) 83-87, http://dx.doi.org/10.1016/j.ypmed.2009.05.005. open in new tab
  2. C.S. Yang, H. Jin, F. Guan, Y.K. Chen, H. Wang, Cancer preventive activities of tea polyphenols, J. Food Drug Anal. 20 (2012) 318-322, http://dx.doi.org/10.3390/ molecules21121679. open in new tab
  3. V. Crespy, G. Williamson, A review of the health effects of green tea catechins in in vivo animal models, J. Nutr. 134 (2018) 3431-3440. open in new tab
  4. A. Chowdhury, J. Sarkar, T. Chakraborti, P.K. Pramanik, S. Chakraborti, Protective role of epigallocatechin-3-gallate in health and disease: a perspective, Biomed. Pharmacother. 78 (2016) 50-59, http://dx.doi.org/10.1016/j.biopha.2015.12.013. open in new tab
  5. M. Šeruga, I. Novak, L. Jakobek, Determination of polyphenols content and anti- oxidant activity of some red wines by differential pulse voltammetry, HPLC and spectrophotometric methods, Food Chem. 124 (2011) 1208-1216, http://dx.doi. org/10.1016/j.foodchem.2010.07.047. open in new tab
  6. V. Todorovic, M. Milenkovic, B. Vidovic, Z. Todorovic, S. Sobajic, Correlation be- tween antimicrobial, antioxidant activity, and polyphenols of alkalized/nonalk- alized cocoa powders, J. Food Sci. 82 (2017) 1020-1027, http://dx.doi.org/10. 1111/1750-3841.13672. open in new tab
  7. M. Grzesik, K. Napar, G. Bartosz, I. Sadowska-Bartosz, Antioxidant properties of catechins: comparison with other antioxidants, Food Chem. 241 (2018) 480-492, http://dx.doi.org/10.1016/j.foodchem.2017.08.117. open in new tab
  8. K. Le Gal, M.X. Ibrahim, C. Wiel, V.I. Sayin, M.K. Akula, C. Karlsson, M.G. Dalin, L.M. Akyürek, P. Lindahl, J. Nilsson, M.O. Bergo, Antioxidants can increase mela- noma metastasis in mice, Sci. Transl. Med. 7 (2015) 1-8, http://dx.doi.org/10. 1126/scitranslmed.aad3740. open in new tab
  9. K.D. James, M.J. Kennett, J.D. Lambert, Potential role of the mitochondria as a target for the hepatotoxic effects of (-)-pigallocatechin-3-gallate in mice, Food Chem. Toxicol. 111 (2018) 302-309, http://dx.doi.org/10.1016/j.fct.2017.11.029. open in new tab
  10. A. Bast, G.R.M.M. Haenen, Ten misconceptions about antioxidants, Trends Pharmacol. Sci. 34 (2013) 430-436, http://dx.doi.org/10.1016/j.tips.2013.05.010. open in new tab
  11. H. Kim, K. Sakamoto, (-)-Epigallocatechin gallate suppresses adipocyte differ- entiation through the MEK/ERK and PI3K/Akt pathways, Cell Biol. Int. 36 (2012) 147-153, http://dx.doi.org/10.1042/CBI20110047. open in new tab
  12. I. Lee, C. Lin, C. Lee, P. Hsieh, C. Yang, Protective effects of (−)-epigallocatechin-3- gallate against TNF-α-induced lung inflammation via ROS-dependent ICAM-1 in- hibition, J. Nutr. Biochem. 24 (2013) 124-136, http://dx.doi.org/10.1016/j. jnutbio.2012.03.009. open in new tab
  13. H.S. Kim, M.J. Quon, J.A. Kim, New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigalloca- techin 3-gallate, Redox Biol. 2 (2014) 187-195, http://dx.doi.org/10.1016/j.redox. 2013.12.022. open in new tab
  14. C. Espinosa-diez, V. Miguel, D. Mennerich, T. Kietzmann, P. Sánchez-Pérez, S. Cadenas, S. Lamas, Antioxidant responses and cellular adjustments to oxidative stress, Redox Biol. 6 (2015) 183-197, http://dx.doi.org/10.1016/j.redox.2015.07. 008. open in new tab
  15. W.H. Koppenol, Oxyradical reactions: from bond-dissociation energies to reduction potentials, FEBS Lett. 264 (1990) 165-167, http://dx.doi.org/10.1016/0014- 5793(90)80239-F. open in new tab
  16. P. Janeiro, A.M. Oliveira Brett, Catechin electrochemical oxidation mechanisms, Anal. Chim. Acta 518 (2004) 109-115, http://dx.doi.org/10.1016/j.aca.2004.05. 038. open in new tab
  17. N. Vivas, M.F. Nonier, N.V. Vivas de Gaulejac, Titrimetric method based on po- tentiometric titration to evaluate redox couples in wine and polyphenols, Vitis -J. Grapevine Res. 43 (2004) 205-208.
  18. P.A. Kilmartin, H. Zou, A.L. Waterhouse, A cyclic voltammetry method suitable for characterizing antioxidant properties of wine and wine phenolics, J. Agric. Food Chem. 49 (2001) 1957-1965. open in new tab
  19. B.D. Autréaux, M.B. Toledano, ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis, Nat. Rev. Mol. Cell Biol. 8 (2007) 813-824, http://dx.doi.org/10.1038/nrm2256. open in new tab
  20. P.D. Ray, B. Huang, Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cell Signal. 24 (2012) 981-990, http://dx.doi.org/ 10.1016/j.cellsig.2012.01.008. open in new tab
  21. S. Prasad, S.C. Gupta, A.K. Tyagi, Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals, Cancer Lett. 387 (2017) 95-105, http://dx.doi.org/10. 1016/j.canlet.2016.03.042. open in new tab
  22. I. In, C. Chio, D.A. Chio, ROS in cancer: the burning question, Trends Mol. Med. 23 (2017) 411-429, http://dx.doi.org/10.1016/j.molmed.2017.03.004. open in new tab
  23. S. Khokhar, S.G.M. Magnusdottir, Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom, J. Agric. Food Chem. 50 (2002) 565-570, http://dx.doi.org/10.1021/jf010153l. open in new tab
  24. A. Yashin, B. Nemzer, Y. Yashin, Bioavailability of tea components, J. Food Res. 1 (2012) 281-290, http://dx.doi.org/10.5539/jfr.v1n2p281. open in new tab
  25. D. Omca, A. Craig, E. Nuran, Biologically important thiols in various vegetables and fruits, J. Agric. Food Chem. 52 (2004) 8151-8154, http://dx.doi.org/10.1021/ jf040266f. open in new tab
  26. H. Yamada, S. Ono, S. Wada, W. Aoi, E.Y. Park, Y. Nakamura, K. Sato, Statuses of food-derived glutathione in intestine, blood, and liver of rat, Npj Sci. Food 2 (2018) 1-6, http://dx.doi.org/10.1038/s41538-018-0011-y. open in new tab
  27. W.L. Reynolds, The reaction between potassium ferrocyanide and iodine in aqueous solutions, J. Am. Chem. Soc. 80 (1958) 1830-1835, http://dx.doi.org/10.1021/ ja01541a016. open in new tab
  28. B. Kusznierewicz, A. Piekarska, B. Mrugalska, P. Konieczka, J. Namieśnik, A. Bartoszek, Phenolic composition and antioxidant properties of polish blue-ber- ried honeysuckle genotypes by HPLC-DAD-MS, HPLC postcolumn derivatization with ABTS or FC, and TLC with DPPH visualization, J. Agric. Food Chem. 60 (2012) 1755-1763, http://dx.doi.org/10.1021/jf2039839. open in new tab
  29. D. Villaño, M.S. Fernández-Pachón, M.L. Moyá, A.M. Troncoso, M.C. García- Parrilla, Radical scavenging ability of polyphenolic compounds towards DPPH free radical, Talanta 71 (2007) 230-235, http://dx.doi.org/10.1016/j.talanta.2006.03. 050. open in new tab
  30. P. Goupy, C. Dufour, M. Loonis, O. Dangles, Quantitative kinetic analysis of hy- drogen transfer reactions from dietary polyphenols to the DPPH radical, J. Agric. Food Chem. 51 (2003) 615-622, http://dx.doi.org/10.1021/jf025938l. open in new tab
  31. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med. 26 (1999) 1231-1237, http://dx.doi.org/10.1016/ S0891-5849(98)00315-3. open in new tab
  32. L. Mira, M.T. Fernandez, M. Santos, R. Rocha, M.H. Florêncio, K.R. Jennings, Interactions of flavonoids with iron and copper ions: a mechanism for their anti- oxidant activity, Free Radic. Res. 36 (2002) 1199-1208, http://dx.doi.org/10. 1080/1071576021000016463. open in new tab
  33. K.L. Wolfe, H.L. Rui, Cellular antioxidant activity (CAA) assay for assessing anti- oxidants, foods, and dietary supplements, J. Agric. Food Chem. 55 (2007) 8896-8907, http://dx.doi.org/10.1021/jf0715166. open in new tab
  34. C.A. Hobbs, C. Swartz, R. Maronpot, J. Davis, L. Recio, M. Koyanagi, S. mo Hayashi, Genotoxicity evaluation of the flavonoid, myricitrin, and its aglycone, myricetin, Food Chem. Toxicol. 83 (2015) 283-292, http://dx.doi.org/10.1016/j.fct.2015.06. 016. open in new tab
  35. V.C. George, H.P.V. Rupasinghe, Apple flavanoids suppress carcinogens-induced DNA damage in normal human bronchial epithelial cells, Oxid. Med. Cell. Longev. 2017 (2017) 1-34, http://dx.doi.org/10.1155/2017/1767198. open in new tab
  36. G. Ciofani, G.G. Genchi, B. Mazzolai, V. Mattoli, Transcriptional profile of genes involved in oxidative stress and antioxidant defense in PC12 cells following treatment with cerium oxide nanoparticles, Biochim. Biophys. Acta -Gen. Subj. 1840 (2014) 495-506, http://dx.doi.org/10.1016/j.bbagen.2013.10.009. open in new tab
  37. D.J.R. Fulton, Nox5 and the regulation of cellular function, Antioxid. Redox Signal. 11 (2009) 2443-2452, http://dx.doi.org/10.1089/ars.2009.2587. open in new tab
  38. P. Bhattacharjee, S. Paul, M. Banerjee, D. Patra, P. Banerjee, N. Ghoshal, A. Bandyopadhyay, A.K. Giri, Functional compensation of glutathione S-transferase M1 (GSTM1) null by another GST superfamily member, GSTM2, Sci. Rep. 3 (2013) 1-6, http://dx.doi.org/10.1038/srep02704. open in new tab
  39. J. Yoshioka, Thioredoxin reductase 2 (Txnrd2) regulates mitochondrial integrity in the progression of age-related heart failure, J. Am. Heart Assoc. 4 (2015) 2-4, http://dx.doi.org/10.1161/JAHA.115.002278. open in new tab
  40. B.M. Babior, J.D. Lambeth, W. Nauseef, The neutrophil NADPH oxidase, Arch. Biochem. Biophys. 397 (2002) 342-344, http://dx.doi.org/10.1006/abbi.2001. 2642. open in new tab
  41. J. Zhang, P.A. Ney, Role of BNIP3 and NIX in cell death, autophagy, and mitophagy, Cell Death Differ. 16 (2009) 939-946, http://dx.doi.org/10.1038/cdd.2009.16. open in new tab
  42. S. Zhang, X. Li, F.L. Jourd'Heuil, S. Qu, N. Devejian, E. Bennett, D. Jourd'Heuil, C. Cai, Cytoglobin promotes cardiac progenitor cell survival against oxidative stress via the upregulation of the NFκB/iNOS signal pathway and nitric oxide production, Sci. Rep. 7 (2017) 1-13, http://dx.doi.org/10.1038/s41598-017-11342-6. open in new tab
  43. M. Roche, P. Rondeau, N.R. Singh, E. Tarnus, E. Bourdon, The antioxidant prop- erties of serum albumin, FEBS Lett. 582 (2008) 1783-1787, http://dx.doi.org/10. 1016/j.febslet.2008.04.057. open in new tab
  44. D. Shah, A. Wanchu, A. Bhatnagar, Interaction between oxidative stress and che- mokines: possible pathogenic role in systemic lupus erythematosus and rheumatoid arthritis, Immunobiology 216 (2011) 1010-1017, http://dx.doi.org/10.1016/j. imbio.2011.04.001. open in new tab
  45. L. Xin, J. Wang, Y. Wu, S. Guo, J. Tong, Increased oxidative stress and activated heat shock proteins in human cell lines by silver nanoparticles, Hum. Exp. Toxicol. 34 (2014) 315-323, http://dx.doi.org/10.1177/0960327114538988. open in new tab
  46. T.K. Kundu, M. Velayutham, J.L. Zweier, Aldehyde oxidase functions as a super- oxide generating NADH oxidase: an important redox regulated pathway of cellular oxygen radical formation, Biochemistry 51 (2012) 2930-2939, http://dx.doi.org/ 10.1080/01902148.2016.1194501. open in new tab
  47. E.T. Marzony, M. Ghanei, Y. Panahi, Oxidative stress and altered expression of peroxiredoxin genes family (PRDXS) and sulfiredoxin-1 (SRXN1) in human lung tissue following exposure to sulfur mustard, Exp. Lung Res. 42 (2016) 217-226, http://dx.doi.org/10.1080/01902148.2016.1194501. open in new tab
  48. C. Jacob, E. Battaglia, T. Burkholz, D. Peng, D. Bagrel, M. Montenarh, Control of oxidative posttranslational cysteine modifications: from intricate chemistry to widespread biological and medical applications, Chem. Res. Toxicol. 25 (2012) 588-604. open in new tab
  49. C. Jacob, Redox signalling via the cellular thiolstat, Biochem. Soc. Trans. 39 (2011) 1247-1253, http://dx.doi.org/10.1042/BST0391247. open in new tab
  50. C. Sandoval-Acuña, J. Ferreira, H. Speisky, Polyphenols and mitochondria: an up- date on their increasingly emerging ROS-scavenging independent actions, Arch. Biochem. Biophys. 559 (2014) 75-90, http://dx.doi.org/10.1016/j.abb.2014.05. 017. open in new tab
  51. G. Manda, G. Isvoranu, M. Victoria, A. Manea, B. Debelec, K. Sami, The redox biology network in cancer pathophysiology and therapeutics, Redox Biol. 5 (2015) 347-357, http://dx.doi.org/10.1016/j.redox.2015.06.014. open in new tab
  52. E. Panieri, M.M. Santoro, ROS homeostasis and metabolism: a dangerous liaison in cancer cells, Cell Death Dis. 7 (2016) e2253, http://dx.doi.org/10.1038/cddis. 2016.105. open in new tab
  53. J. Wang, B. Luo, X. Li, W. Lu, J. Yang, Y. Hu, P. Huang, S. Wen, Inhibition of cancer growth in vitro and in vivo by a novel ROS-modulating agent with ability to eliminate stem-like cancer cells, Cell Death Dis. 8 (2017) e2887, http://dx.doi.org/ 10.1038/cddis.2017.272. open in new tab
  54. M. Benhar, D. Engelberg, A. Levitzki, ROS, stress-activated kinases and stress sig- naling in cancer, EMBO Rep. 3 (2002) 420-425, http://dx.doi.org/10.1093/embo- reports/kvf094. open in new tab
  55. Y.M.W. Janssen-Heininger, B.T. Mossman, N.H. Heintz, H.J. Forman, B. Kalyanaraman, T. Finkel, J.S. Stamler, S. Goo, A. Van Der Vliet, Redox-based regulation of signal transduction: principles, pitfalls, and promises, Free Radic. Biol. Med. 45 (2008) 1-17, http://dx.doi.org/10.1016/j.freeradbiomed.2008.03.011. open in new tab
  56. B. Marengo, M. Nitti, A.L. Furfaro, R. Colla, C. De Ciucis, U.M. Marinari, M.A. Pronzato, N. Traverso, C. Domenicotti, Redox homeostasis and cellular anti- oxidant systems: crucial players in cancer growth and therapy, Oxid. Med. Cell. Longev. 2016 (2016) 1-16, http://dx.doi.org/10.1155/2016/6235641. open in new tab
  57. J. Pouysségur, The central role of amino acids in cancer redox homeostasis: vul- nerability points of the cancer redox code, Front. Oncol. 7 (2017) 319, http://dx. doi.org/10.3389/fonc.2017.00319. open in new tab
  58. D. Kołodziejski, A. Brillowska-Dąbrowska, A. Bartoszek, The extended version of restriction analysis approach for the examination of the ability of low-molecular- weight compounds to modify DNA in a cell-free system, Food Chem. Toxicol. 75 (2015) 118-127, http://dx.doi.org/10.1016/j.fct.2014.11.016. open in new tab
  59. C. Zhang, M. Skamagki, Z. Liu, A. Ananthanarayanan, R. Zhao, H. Li, K. Kim, Biological significance of the suppression of oxidative phosphorylation in induced pluripotent stem cells report biological significance of the suppression of oxidative phosphorylation in induced pluripotent stem cells, Cell Rep. 21 (2017) 2058-2065, http://dx.doi.org/10.1016/j.celrep.2017.10.098. open in new tab
Verified by:
Gdańsk University of Technology

seen 207 times

Recommended for you

Meta Tags