Turbulence model evaluation for numerical modelling of turbulent flow and heat transfer of nanofluids
Abstract
In this work, Nusselt number and friction factor are calculated numerically for turbulent pipe flow (Reynolds number between 6000 and 12000) with constant heat flux boundary condition using nanofluids. The nanofluid is modelled with the single-phase approach and the simulation results are compared with experimental data. Ethylene glycol and water, 60:40 EG/W mass ratio, as base fluid and SiO2 nanoparticles are used as nanofluid with particle volume concentrations ranging from 0% to 10%. A prior turbulence model evaluation of k-ε-, k-ω- and k-ω-SST-model revealed substantial deviations between the tested models and resulted in applying the k-ω-SST-model for the simulation. Nusselt number predictions for the nanofluid are in agreement with experimental results and a conventional single-phase correlation. The mean deviation is in the range of 5%. Friction factor values show a mean deviation of 1.5% to a conventional single-phase correlation, however, they differ considerably from the nanofluid experimental data
Citations
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Authors (4)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
- Published in:
-
Applied Mechanics and Materials
no. 831,
pages 165 - 180,
ISSN: 1662-7482 - Language:
- English
- Publication year:
- 2016
- Bibliographic description:
- Boertz H., Baars A., Cieśliński J., Smoleń S.: Turbulence model evaluation for numerical modelling of turbulent flow and heat transfer of nanofluids// Applied Mechanics and Materials. -Vol. 831., (2016), s.165-180
- DOI:
- Digital Object Identifier (open in new tab) 10.4028/amm831
- Verified by:
- Gdańsk University of Technology
seen 126 times
Recommended for you
Numerical Study of Turbulent Flow and Heat Transfer of Nanofluids in Pipes
- H. Boertz,
- A. Baars,
- J. Cieśliński
- + 1 authors
Numerical study of turbulent flow and heat transfer of nanofluids in pipes
- J. Cieśliński,
- H. Boertz,
- A. Baars
- + 1 authors
Numerical single-phase modeling of turbulent flow and heat transfer of nanofluids
- H. Boertz,
- A. Baars,
- J. Cieśliński
- + 1 authors