Understanding the Dominant Physics Mechanisms on the p-i-n Perovskite Solar Cells Fabricated by Scalable Slot-Die Coating Process in Ambient Air
Abstract
Perovskite solar cells (PSC) are emerging technologies that have shown continuous improvement in power conversion efficiency (PCE) and stability. However, a very important aspect that has been seldom considered is the reproducibility of PCE of PSC devices. It is possible to achieve PCE from 10.21% to 17.05% using scalable slot-die-coating technique. However, a spatial distribution of performance is clearly observed for device samples on a 4 × 4 cm substrate. The relatively low PCE is mainly coming from the losses of electrical mechanism. To have in-depth understanding of the losses, the dominant loss analysis techniques including numerical simulations are used to explore the mechanism. In the results, it is indicated that a part of efficiency decrease is due to the increase of bulk defect density which linearly changes with the quality of the perovskite layer and related to recombination process. However, extremely high-charge-carrier transportation losses are found at the HTL/perovskite interface that are related to the Fermi-level pinning mechanism for low-efficiency device. The result of physics insight of perovskite solar cells leads to a strategy, where chemical passivation technique is used to achieve the PCE from 13.81% to 18.07% for the batch of devices with good reproducibility.
Citations
-
2
CrossRef
-
0
Web of Science
-
1
Scopus
Authors (5)
Cite as
Full text
- Publication version
- Submitted Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1002/solr.202300791
- License
- Copyright (2023 Wiley-VCH GmbH)
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Solar RRL
no. 8,
pages 1 - 13,
ISSN: 2367-198X - Language:
- English
- Publication year:
- 2024
- Bibliographic description:
- Głowienka D., Huang S., Lee P., Tsai F., Su W.: Understanding the Dominant Physics Mechanisms on the p-i-n Perovskite Solar Cells Fabricated by Scalable Slot-Die Coating Process in Ambient Air// Solar RRL -Vol. 8,iss. 3 (2024), s.1-13
- DOI:
- Digital Object Identifier (open in new tab) 10.1002/solr.202300791
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 116 times
Recommended for you
Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3
- D. Głowienka,
- D. Zhang,
- F. Di Giacomo
- + 4 authors
Featuring Semitransparent p–i–n Perovskite Solar Cells for High-Efficiency Four-Terminal/Silicon Tandem Solar Cells
- P. Lee,
- T. Wu,
- C. Li
- + 5 authors