Understanding the origin of high corrosion inhibition efficiency of bee products towards aluminium alloys in alkaline environments - Publication - Bridge of Knowledge

Search

Understanding the origin of high corrosion inhibition efficiency of bee products towards aluminium alloys in alkaline environments

Abstract

Various bee products were found to be efficient corrosion inhibitors of aluminium in different environments. In particular, bee pollen was found to be highly effective in alkaline electrolytes, yet its highly complex composition and possible synergistic interactions hinder determination of the compounds acting as active corrosion inhibitors. The main purpose of the following work is to investigate the effect of solvents used for pollen extraction process on the corrosion inhibition of AA5754 alloy in alkaline environment. Both infrared and mass spectroscopies as well as chromatographic analysis were used to determine differences in the composition of each obtained extract. The inhibition efficiency (IE%) of each extract was determined by using the potentiodynamic polarization and impedance studies. The highest IE%, exceeding 90% at 10 gL-1, was recorded for the water/ethanol extract. Most importantly, it has been found that the dichloromethane extract containing less polar compounds enhanced the corrosion rate at low bee pollen concentrations, and offered lower inhibition efficiency at the concentrations above 10 gL-1. The adsorption isotherms were drawn based on dynamic impedance spectroscopy in galvanostatic mode (g-DEIS), while the measurements carried out at elevated temperatures allowed the construction of Arrhenius plots and, consequently, the confirmation of the physical mechanism of adsorption.

Citations

  • 5 7

    CrossRef

  • 0

    Web of Science

  • 5 9

    Scopus

Cite as

Full text

download paper
downloaded 292 times
Publication version
Submitted Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
ELECTROCHIMICA ACTA no. 304, pages 263 - 274,
ISSN: 0013-4686
Language:
English
Publication year:
2019
Bibliographic description:
Ryl J., Wysocka J., Cieślik M., Gerengi H., Ossowski T., Krakowiak S., Niedziałkowski P.: Understanding the origin of high corrosion inhibition efficiency of bee products towards aluminium alloys in alkaline environments// ELECTROCHIMICA ACTA. -Vol. 304, (2019), s.263-274
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.electacta.2019.03.012
Bibliography: test
  1. N. Raghavendra, J.I. Bhat, Anti-corrosion Properties of Areca Palm Leaf Extract on Aluminium in 0.5 M HCl Environment, South Afr. J. Chem. 71 (2018) 30-38. doi:10.17159/0379-4350/2018/v71a4. open in new tab
  2. N. Chaubey, V.K. Singh, M.A. Quraishi, Electrochemical approach of Kalmegh leaf extract on the corrosion behavior of aluminium alloy in alkaline solution, Int. J. Ind. Chem. 8 (2017) 75-82. doi:10.1007/s40090-016- 0103-y. open in new tab
  3. E.E. Oguzie, Corrosion inhibition of mild steel in hydrochloric acid solution by methylene blue dye, Mater. Lett. 59 (2005) 1076-1079. doi:10.1016/j.matlet.2004.12.009. open in new tab
  4. E.E. Oguzie, Inhibiting effect of crystal violet dye on aluminium corrosion in acidic and alkaline media, Chem. Eng. Commun. 196 (2008) 591-601. doi:10.1080/00986440802483848. open in new tab
  5. E.E. Oguzie, G.N. Onuoha, A.I. Onuchukwu, The inhibition of aluminium corrosion in potassium hydroxide by "Congo Red" dye, and synergistic action with halide ions, Anti-Corros. Methods Mater. 52 (2005) 293-298. doi:10.1108/00035590510615794. open in new tab
  6. T.J. Haley, Pharmacology and Toxicology of the Rare Earth Elements, J. Pharm. Sci. 54 (1965) 663-670. doi:10.1002/jps.2600540502. open in new tab
  7. M. Bethencourt, F.J. Botana, J.J. Calvino, M. Marcos, M.A. RodrÍguez-Chacón, Lanthanide compounds as environmentally-friendly corrosion inhibitors of aluminium alloys: a review, Corros. Sci. 40 (1998) 1803- 1819. doi:10.1016/S0010-938X(98)00077-8. open in new tab
  8. H. Ju, Z.-P. Kai, Y. Li, Aminic nitrogen-bearing polydentate Schiff base compounds as corrosion inhibitors for iron in acidic media: A quantum chemical calculation, Corros. Sci. 50 (2008) 865-871. doi:10.1016/j.corsci.2007.10.009. open in new tab
  9. I. Ahamad, R. Prasad, M.A. Quraishi, Thermodynamic, electrochemical and quantum chemical investigation of some Schiff bases as corrosion inhibitors for mild steel in hydrochloric acid solutions, Corros. Sci. 52 (2010) 933-942. doi:10.1016/j.corsci.2009.11.016. open in new tab
  10. R. Solmaz, E. Altunbaş, G. Kardaş, Adsorption and corrosion inhibition effect of 2-((5-mercapto-1,3,4- thiadiazol-2-ylimino)methyl)phenol Schiff base on mild steel, Mater. Chem. Phys. 125 (2011) 796-801. doi:10.1016/j.matchemphys.2010.09.056. open in new tab
  11. M.M. El-Naggar, Corrosion inhibition of mild steel in acidic medium by some sulfa drugs compounds, Corros. Sci. 49 (2007) 2226-2236. doi:10.1016/j.corsci.2006.10.039. open in new tab
  12. G. Gece, Drugs: A review of promising novel corrosion inhibitors, Corros. Sci. 53 (2011) 3873-3898. doi:10.1016/j.corsci.2011.08.006. open in new tab
  13. K. Xhanari, M. Finšgar, M. Knez Hrnčič, U. Maver, Ž. Knez, B. Seiti, Green corrosion inhibitors for aluminium and its alloys: a review, RSC Adv. 7 (2017) 27299-27330. doi:10.1039/C7RA03944A. open in new tab
  14. F. Mansfeld, ed., Corrosion mechanisms, M. Dekker, New York, 1987.
  15. A.K. Maayta, N.A.F. Al-Rawashdeh, Inhibition of acidic corrosion of pure aluminum by some organic compounds, Corros. Sci. 46 (2004) 1129-1140. doi:10.1016/j.corsci.2003.09.009. open in new tab
  16. M. Aliofkhazraei, Developments in corrosion protection, INTECH, Rijeka, Croatia, 2014. open in new tab
  17. A. Dömling, Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry † , Chem. Rev. 106 (2006) 17-89. doi:10.1021/cr0505728. open in new tab
  18. M.S. Singh, S. Chowdhury, Recent developments in solvent-free multicomponent reactions: a perfect synergy for eco-compatible organic synthesis, RSC Adv. 2 (2012) 4547. doi:10.1039/c2ra01056a. open in new tab
  19. R.C. Cioc, E. Ruijter, R.V.A. Orru, Multicomponent reactions: advanced tools for sustainable organic synthesis, Green Chem. 16 (2014) 2958-2975. doi:10.1039/C4GC00013G. open in new tab
  20. C. Capello, U. Fischer, K. Hungerbühler, What is a green solvent? A comprehensive framework for the environmental assessment of solvents, Green Chem. 9 (2007) 927. doi:10.1039/b617536h. open in new tab
  21. M.V. Baroni, M.L. Nores, M.D.P. Díaz, G.A. Chiabrando, J.P. Fassano, C. Costa, D.A. Wunderlin, Determination of Volatile Organic Compound Patterns Characteristic of Five Unifloral Honey by Solid-Phase Microextraction−Gas Chromatography−Mass Spectrometry Coupled to Chemometrics, J. Agric. Food Chem. 54 (2006) 7235-7241. doi:10.1021/jf061080e. open in new tab
  22. L. Yaoa, Y. Jiang, R. Singanusong, N. Datta, K. Raymont, Phenolic acids in Australian Melaleuca, Guioa, Lophostemon, Banksia and Helianthus honeys and their potential for floral authentication, Food Res. Int. 38 (2005) 651-658. doi:10.1016/j.foodres.2005.01.002. open in new tab
  23. F.A. Tomás-Barberán, I. Martos, F. Ferreres, B.S. Radovic, E. Anklam, HPLC flavonoid profiles as markers for the botanical origin of European unifloral honeys: HPLC flavonoid profiles as unifloral honey markers, J. Sci. Food Agric. 81 (2001) 485-496. doi:10.1002/jsfa.836. open in new tab
  24. G. Bergamo, S.K. Tischer Seraglio, L.V. Gonzaga, R. Fett, A.C.O. Costa, Mineral profile as a potential parameter for verifying the authenticity of bracatinga honeydew honeys, LWT. 97 (2018) 390-395. doi:10.1016/j.lwt.2018.07.028. open in new tab
  25. L. Fearnley, D.R. Greenwood, M. Schmitz, J.M. Stephens, R.C. Schlothauer, K.M. Loomes, Compositional analysis of manuka honeys by high-resolution mass spectrometry: Identification of a manuka-enriched archetypal molecule, Food Chem. 132 (2012) 948-953. doi:10.1016/j.foodchem.2011.11.074. open in new tab
  26. N. Janoskova, O. Vyviurska, I. Špánik, Identification of volatile organic compounds in honeydew honeys using comprehensive gas chromatography, J. Food Nutr. Res. 53 (2014) 353-362.
  27. Echigo T., Takenaka T., Production of Organic Acids in Honey by Honeybees, J. Agric. Chem. Soc. Jpn. 48 (1974) 225-230. doi:10.1271/nogeikagaku1924.48.225. open in new tab
  28. A.L. Wilkins, Y. Lu, Extractives from New Zealand Honeys. 5. Aliphatic Dicarboxylic Acids in New Zealand Rewarewa (Knightea excelsa) Honey, J. Agric. Food Chem. 43 (1995) 3021-3025. doi:10.1021/jf00060a006. open in new tab
  29. R. Rosliza, W.B. Wan Nik, S. Izman, Y. Prawoto, Anti-corrosive properties of natural honey on Al-Mg-Si alloy in seawater, Curr. Appl. Phys. 10 (2010) 923-929. doi:10.1016/j.cap.2009.11.074. open in new tab
  30. S. Gudić, L. Vrsalović, M. Kliškić, I. Jerković, A. Radonić, M. Zekić, Corrosion Inhibition of AA 5052 Aluminium Alloy in NaCl Solution by Different Types of Honey, Int J Electrochem Sci. 11 (2016) 998-1011.
  31. H. Gerengi, H. Goksu, P. Slepski, The inhibition effect of mad Honey on corrosion of 2007-type aluminium alloy in 3.5% NaCl solution, Mater. Res. 17 (2014) 255-264. doi:10.1590/S1516-14392013005000174. open in new tab
  32. W.W.B. Nik, M.F. Zulkifli, R. Rosliza, M.J. Ghazali, K.F. Khaled, Potential of honey as corrosion inhibitor for aluminium alloy in seawater, World Appl. Sci. J. 14 (2011) 215-220.
  33. A. Singh, I. Ahamad, M.A. Quraishi, Piper longum extract as green corrosion inhibitor for aluminium in NaOH solution, Arab. J. Chem. 9 (2016) S1584-S1589. doi:10.1016/j.arabjc.2012.04.029. open in new tab
  34. J. Wang, A. Singh, M. Talha, X. Luo, X. Deng, L. Yuanhua, Electrochemical and Theoretical Study of Imidazole Derivative as Effective Corrosion Inhibitor for Aluminium, Int. J. Electrochem. Sci. (2018) 11539-11548. doi:10.20964/2018.12.44. open in new tab
  35. J. Wysocka, M. Cieslik, S. Krakowiak, J. Ryl, Carboxylic acids as efficient corrosion inhibitors of aluminium alloys in alkaline media, Electrochimica Acta. 289 (2018) 175-192. doi:10.1016/j.electacta.2018.08.070. open in new tab
  36. J. Wysocka, S. Krakowiak, J. Ryl, Evaluation of citric acid corrosion inhibition efficiency and passivation kinetics for aluminium alloys in alkaline media by means of dynamic impedance monitoring, Electrochimica Acta. 258 (2017) 1463-1475. doi:10.1016/j.electacta.2017.12.017. open in new tab
  37. K. Darowicki, P. Ślepski, Dynamic electrochemical impedance spectroscopy of the first order electrode reaction, J. Electroanal. Chem. 547 (2003) 1-8. doi:10.1016/S0022-0728(03)00154-2. open in new tab
  38. J. Ryl, R. Bogdanowicz, P. Slepski, M. Sobaszek, K. Darowicki, Dynamic Electrochemical Impedance Spectroscopy (DEIS) as a Tool for Analyzing Surface Oxidation Processes on Boron-Doped Diamond Electrodes, J. Electrochem. Soc. 161 (2014) H359-H364. doi:10.1149/2.016406jes. open in new tab
  39. K. Darowicki, S. Krakowiak, P. Slepski, The time dependence of pit creation impedance spectra, Electrochem. Commun. 6 (2004) 860-866. doi:10.1016/j.elecom.2004.06.010. open in new tab
  40. H. Gerengi, K. Darowicki, P. Slepski, G. Bereket, J. Ryl, Investigation effect of benzotriazole on the corrosion of brass-MM55 alloy in artificial seawater by dynamic EIS, J. Solid State Electrochem. 14 (2010) 897-902. doi:10.1007/s10008-009-0923-1. open in new tab
  41. K. Darowicki, A. Zieliński, K. J Kurzydłowski, Application of dynamic impedance spectroscopy to atomic force microscopy, Sci. Technol. Adv. Mater. 9 (2008) 045006. doi:10.1088/1468-6996/9/4/045006. open in new tab
  42. A.S. Bondarenko, I.E.L. Stephens, H.A. Hansen, F.J. Pérez-Alonso, V. Tripkovic, T.P. Johansson, J. Rossmeisl, J.K. Nørskov, I. Chorkendorff, The Pt(111)/Electrolyte Interface under Oxygen Reduction Reaction Conditions: An Electrochemical Impedance Spectroscopy Study, Langmuir. 27 (2011) 2058-2066. doi:10.1021/la1042475. open in new tab
  43. B.B. Berkes, A. Maljusch, W. Schuhmann, A.S. Bondarenko, Simultaneous Acquisition of Impedance and Gravimetric Data in a Cyclic Potential Scan for the Characterization of Nonstationary Electrode/Electrolyte Interfaces, J. Phys. Chem. C. 115 (2011) 9122-9130. doi:10.1021/jp200755p. open in new tab
  44. P. Slepski, K. Darowicki, E. Janicka, G. Lentka, A complete impedance analysis of electrochemical cells used as energy sources, J. Solid State Electrochem. 16 (2012) 3539-3549. doi:10.1007/s10008-012-1825-1. open in new tab
  45. K. Darowicki, Theoretical description of the measuring method of instantaneous impedance spectra, J. Electroanal. Chem. 486 (2000) 101-105. doi:10.1016/S0022-0728(00)00110-8. open in new tab
  46. J. Wysocka, S. Krakowiak, J. Ryl, K. Darowicki, Investigation of the electrochemical behaviour of AA1050 aluminium alloy in aqueous alkaline solutions using Dynamic Electrochemical Impedance Spectroscopy, J. Electroanal. Chem. 778 (2016) 126-136. doi:10.1016/j.jelechem.2016.08.028. open in new tab
  47. P. Larkin, Infrared and raman spectroscopy: principles and spectral interpretation, Elsevier, Amsterdam ; open in new tab
  48. Boston, 2011.
  49. A.H. Al-Moubaraki, A.A. Al-Howiti, M.M. Al-Dailami, E.A. Al-Ghamdi, Role of aqueous extract of celery ( Apium graveolens L.) seeds against the corrosion of aluminium/sodium hydroxide systems, J. Environ. Chem. Eng. 5 (2017) 4194-4205. doi:10.1016/j.jece.2017.08.015. open in new tab
  50. B. Stuart, Infrared spectroscopy: fundamentals and applications, J. Wiley, Chichester, West Sussex, England ; open in new tab
  51. Hoboken, NJ, 2004.
  52. Z. Moghadam, M. Shabani-Nooshabadi, M. Behpour, Electrochemical performance of aluminium alloy in strong alkaline media by urea and thiourea as inhibitor for aluminium-air batteries, J. Mol. Liq. 242 (2017) 971-978. doi:10.1016/j.molliq.2017.07.119. open in new tab
  53. G. Moretti, F. Guidi, G. Grion, Tryptamine as a green iron corrosion inhibitor in 0.5 M deaerated sulphuric acid, Corros. Sci. 46 (2004) 387-403. doi:10.1016/S0010-938X(03)00150-1. open in new tab
  54. D.A. López, S.N. Simison, S.R. de Sánchez, The influence of steel microstructure on CO2 corrosion. EIS studies on the inhibition efficiency of benzimidazole, Electrochimica Acta. 48 (2003) 845-854. doi:10.1016/S0013-4686(02)00776-4. open in new tab
  55. D.D. Macdonald, Evaluation of Alloy Anodes for Aluminum-Air Batteries, J. Electrochem. Soc. 135 (1988) 2410. doi:10.1149/1.2095348. open in new tab
  56. J. Ryl, J. Wysocka, M. Jarzynka, A. Zielinski, J. Orlikowski, K. Darowicki, Effect of native air-formed oxidation on the corrosion behavior of AA 7075 aluminum alloys, Corros. Sci. 87 (2014) 150-155. doi:10.1016/j.corsci.2014.06.022. open in new tab
  57. J. Tymoczko, W. Schuhmann, A.S. Bandarenka, The constant phase element reveals 2D phase transitions in adsorbate layers at the electrode/electrolyte interfaces, Electrochem. Commun. 27 (2013) 42-45. doi:10.1016/j.elecom.2012.11.001. open in new tab
  58. H. Gerengi, H.I. Sahin, Schinopsis lorentzii Extract As a Green Corrosion Inhibitor for Low Carbon Steel in 1 M HCl Solution, Ind. Eng. Chem. Res. 51 (2012) 780-787. doi:10.1021/ie201776q. open in new tab
  59. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Determination of effective capacitance and film thickness from constant-phase-element parameters, Electrochimica Acta. 55 (2010) 6218-6227. doi:10.1016/j.electacta.2009.10.065. open in new tab
  60. J. Orlikowski, J. Ryl, M. Jarzynka, S. Krakowiak, K. Darowicki, Instantaneous Impedance Monitoring of Aluminum Alloy 7075 Corrosion in Borate Buffer with Admixed Chloride Ions, CORROSION. 71 (2015) 828- 838. doi:10.5006/1546. open in new tab
  61. S.A. Umoren, M.M. Solomon, Synergistic corrosion inhibition effect of metal cations and mixtures of organic compounds: A Review, J. Environ. Chem. Eng. 5 (2017) 246-273. doi:10.1016/j.jece.2016.12.001. open in new tab
  62. J. Zhao, G. Chen, The synergistic inhibition effect of oleic-based imidazoline and sodium benzoate on mild steel corrosion in a CO2-saturated brine solution, Electrochimica Acta. 69 (2012) 247-255. doi:10.1016/j.electacta.2012.02.101. open in new tab
  63. R. Fuchs-Godec, Effects of surfactants and their mixtures on inhibition of the corrosion process of ferritic stainless steel, Electrochimica Acta. 54 (2009) 2171-2179. doi:10.1016/j.electacta.2008.10.014. open in new tab
  64. Y. Qiang, L. Guo, S. Zhang, W. Li, S. Yu, J. Tan, Synergistic effect of tartaric acid with 2,6-diaminopyridine on the corrosion inhibition of mild steel in 0.5 M HCl, Sci. Rep. 6 (2016). doi:10.1038/srep33305. open in new tab
  65. R.T. Loto, Corrosion Inhibition Performance of the Synergistic Effect of Rosmarinus officinalis and 5- Bromovanillin on 1018 Carbon Steel in Dilute Acid Media, J. Fail. Anal. Prev. 17 (2017) 1031-1043. doi:10.1007/s11668-017-0334-z. open in new tab
  66. K.A. Yasakau, M.L. Zheludkevich, S.V. Lamaka, M.G.S. Ferreira, Role of intermetallic phases in localized corrosion of AA5083, Electrochimica Acta. 52 (2007) 7651-7659. doi:10.1016/j.electacta.2006.12.072. open in new tab
  67. J. Wloka, G. Bürklin, S. Virtanen, Influence of second phase particles on initial electrochemical properties of AA7010-T76, Electrochimica Acta. 53 (2007) 2055-2059. doi:10.1016/j.electacta.2007.09.004. open in new tab
  68. R. Goswami, G. Spanos, P.S. Pao, R.L. Holtz, Precipitation behavior of the ß phase in Al-5083, Mater. Sci. Eng. A. 527 (2010) 1089-1095. doi:10.1016/j.msea.2009.10.007. open in new tab
  69. Y. Huang, Y. Li, Z. Xiao, Y. Liu, Y. Huang, X. Ren, Effect of homogenization on the corrosion behavior of 5083- H321 aluminum alloy, J. Alloys Compd. 673 (2016) 73-79. doi:10.1016/j.jallcom.2016.02.228. open in new tab
  70. A. Afseth, J.H. Nordlien, G.M. Scamans, K. Nisancioglu, Influence of heat treatment and surface conditioning on filiform corrosion of aluminium alloys AA3005 and AA5754, Corros. Sci. 43 (2001) 2359-2377. doi:10.1016/S0010-938X(01)00019-1. open in new tab
  71. C. Illoul, N. Zazi, F. Debiane, J.-P. Chopart, Relation Between Mechanical Instabilities and Corrosion Sensitivity of Aluminum Body Cans Surfaces, Prot. Met. Phys. Chem. Surf. 54 (2018) 876-883. doi:10.1134/S2070205118050106. open in new tab
  72. H. Piao, N.S. McIntyre, Adventitious carbon growth on aluminium and gold-aluminium alloy surfaces, Surf. Interface Anal. 33 (2002) 591-594. doi:10.1002/sia.1425. open in new tab
  73. T.L. Barr, S. Seal, Nature of the use of adventitious carbon as a binding energy standard, J. Vac. Sci. Technol. Vac. Surf. Films. 13 (1995) 1239-1246. doi:10.1116/1.579868. open in new tab
  74. B. Müller, Citric acid as corrosion inhibitor for aluminium pigment, Corros. Sci. 46 (2004) 159-167. doi:10.1016/S0010-938X(03)00191-4. open in new tab
  75. J. Qu, G. Chen, H. Wang, D. Nie, Effect of water content on corrosion inhibition behavior of self-assembled TDPA on aluminum alloy surface, Trans. Nonferrous Met. Soc. China. 23 (2013) 3137-3144. doi:10.1016/S1003-6326(13)62844-7. open in new tab
  76. A.R. Madram, F. Shokri, M.R. Sovizi, H. Kalhor, Aromatic Carboxylic Acids as Corrosion Inhibitors for Aluminium in Alkaline Solution:, Port. Electrochimica Acta. 34 (2016) 395-405. doi:10.4152/pea.201606395. open in new tab
  77. K. Komosinska-Vassev, P. Olczyk, J. Kaźmierczak, L. Mencner, K. Olczyk, Bee Pollen: Chemical Composition and Therapeutic Application, Evid. Based Complement. Alternat. Med. 2015 (2015) 1-6. doi:10.1155/2015/297425. open in new tab
  78. K. Xhanari, M. Finšgar, Organic corrosion inhibitors for aluminum and its alloys in chloride and alkaline solutions: A review, Arab. J. Chem. (2016). doi:10.1016/j.arabjc.2016.08.009. open in new tab
  79. Y.I. Kuznetsov, Organic corrosion inhibitors: where are we now? A review. Part IV. Passivation and the role of mono-and diphosphonates, Int. J. Corros. Scale Inhib. 6 (2017). doi:10.17675/2305-6894-2017-6-4-3. open in new tab
  80. K. Wapner, M. Stratmann, G. Grundmeier, Structure and stability of adhesion promoting aminopropyl phosphonate layers at polymer/aluminium oxide interfaces, Int. J. Adhes. Adhes. 28 (2008) 59-70. doi:10.1016/j.ijadhadh.2007.05.001. open in new tab
  81. H. Allal, Y. Belhocine, E. Zouaoui, Computational study of some thiophene derivatives as aluminium corrosion inhibitors, J. Mol. Liq. 265 (2018) 668-678. doi:10.1016/j.molliq.2018.05.099. open in new tab
  82. L. Kobotiatis, N. Pebere, P.G. Koutsoukos, Study of the electrochemical behaviour of the 7075 aluminum alloy in the presence of sodium oxalate, Corros. Sci. 41 (1999) 941-957. doi:10.1016/S0010-938X(98)00164- 4. open in new tab
  83. M. Amin, M. Saracoglu, N. El-Bagoury, T. Sharshar, M. Ibrahim, J. Wysocka, J. Ryl, Microstructure and Corrosion Behaviour of Carbon Steel and Ferritic and Austenitic Stainless Steels in NaCl Solutions and the Effect of p-Nitrophenyl Phosphate Disodium Salt, Int. J. Electrochem. Sci. 11 (2016) 10029-10052. doi:10.20964/2016.12.17. open in new tab
  84. M. Giza, P. Thissen, G. Grundmeier, Adsorption Kinetics of Organophosphonic Acids on Plasma-Modified Oxide-Covered Aluminum Surfaces, Langmuir. 24 (2008) 8688-8694. doi:10.1021/la8000619. open in new tab
  85. E. McCafferty, J.P. Wightman, Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method, Surf. Interface Anal. 26 (1998) 549-564. doi:10.1002/(SICI)1096- 9918(199807)26:8<549::AID-SIA396>3.0.CO;2-Q. open in new tab
  86. Q. Liu, X. Tong, G. Zhou, H2O Dissociation-Induced Aluminum Oxide Growth on Oxidized Al(111) Surfaces, Langmuir. 31 (2015) 13117-13126. doi:10.1021/acs.langmuir.5b02769. open in new tab
  87. E. Mazzotta, S. Rella, A. Turco, C. Malitesta, XPS in development of chemical sensors, RSC Adv. 5 (2015) 83164-83186. doi:10.1039/C5RA14139G. open in new tab
  88. E.E. Oguzie, Corrosion inhibition of aluminium in acidic and alkaline media by Sansevieria trifasciata extract, Corros. Sci. 49 (2007) 1527-1539. doi:10.1016/j.corsci.2006.08.009. open in new tab
  89. H. Ashassi-Sorkhabi, Z. Ghasemi, D. Seifzadeh, The inhibition effect of some amino acids towards the corrosion of aluminum in 1M HCl+1M H2SO4 solution, Appl. Surf. Sci. 249 (2005) 408-418. doi:10.1016/j.apsusc.2004.12.016. open in new tab
  90. S.A. Umoren, E.E. Ebenso, Studies of the anti-corrosive effect of Raphia hookeri exudate gum-halide mixtures for aluminium corrosion in acidic medium, Pigment Resin Technol. 37 (2008) 173-182. doi:10.1108/03699420810871020. open in new tab
  91. I.M. Mejeha, M.C. Nwandu, K.B. Okeoma, L.A. Nnanna, M.A. Chidiebere, F.C. Eze, E.E. Oguzie, Experimental and theoretical assessment of the inhibiting action of Aspilia africana extract on corrosion aluminium alloy AA3003 in hydrochloric acid, J. Mater. Sci. 47 (2012) 2559-2572. doi:10.1007/s10853-011-6079-2. open in new tab
  92. A. Yurt, B. Duran, H. Dal, An experimental and theoretical investigation on adsorption properties of some diphenolic Schiff bases as corrosion inhibitors at acidic solution/mild steel interface, Arab. J. Chem. 7 (2014) 732-740. doi:10.1016/j.arabjc.2010.12.010. open in new tab
  93. E..
  94. Ebenso, Synergistic effect of halide ions on the corrosion inhibition of aluminium in H2SO4 using 2- acetylphenothiazine, Mater. Chem. Phys. 79 (2003) 58-70. doi:10.1016/S0254-0584(02)00446-7. open in new tab
  95. A.M. Abdel-Gaber, B.A. Abd-El-Nabey, I.M. Sidahmed, A.M. El-Zayady, M. Saadawy, Inhibitive action of some plant extracts on the corrosion of steel in acidic media, Corros. Sci. 48 (2006) 2765-2779. doi:10.1016/j.corsci.2005.09.017. open in new tab
  96. C. Mary Anbarasi, G. Divya, A Green Approach to Corrosion Inhibition of Aluminium in Acid Medium Using Azwain Seed Extract, Mater. Today Proc. 4 (2017) 5190-5200. doi:10.1016/j.matpr.2017.05.026. open in new tab
  97. J. Fayomi, A.P.I. Popoola, O.S.I. Fayomi, K.O. Babaremu, Data on the effect of temperature variation tendency on the inhibitive absorption of Lasienthera africanum in 0.5M HCl: A necessity, Data Brief. 20 (2018) 2003-2011. doi:10.1016/j.dib.2018.09.019. open in new tab
  98. J. Ryl, K. Darowicki, P. Slepski, Evaluation of cavitation erosion-corrosion degradation of mild steel by means of dynamic impedance spectroscopy in galvanostatic mode, Corros. Sci. 53 (2011) 1873-1879. doi:10.1016/j.corsci.2011.02.004. open in new tab
  99. A.A. Khadom, A.S. Yaro, A.A.H. Kadhum, ADSORPTION MECHANISM OF BENZOTRIAZOLE FOR CORROSION INHIBITION OF COPPER-NICKEL ALLOY IN HYDROCHLORIC ACID, J. Chil. Chem. Soc. 55 (2010). doi:10.4067/S0717-97072010000100035. open in new tab
  100. E.A. Noor, Potential of aqueous extract of Hibiscus sabdariffa leaves for inhibiting the corrosion of aluminum in alkaline solutions, J. Appl. Electrochem. 39 (2009) 1465-1475. doi:10.1007/s10800-009-9826-1. open in new tab
  101. L.R. Chauhan, G. Gunasekaran, Corrosion inhibition of mild steel by plant extract in dilute HCl medium, Corros. Sci. 49 (2007) 1143-1161. doi:10.1016/j.corsci.2006.08.012. open in new tab
  102. A.K. Satapathy, G. Gunasekaran, S.C. Sahoo, K. Amit, P.V. Rodrigues, Corrosion inhibition by Justicia gendarussa plant extract in hydrochloric acid solution, Corros. Sci. 51 (2009) 2848-2856. doi:10.1016/j.corsci.2009.08.016. open in new tab
  103. I.B. Obot, S.A. Umoren, N.O. Obi-Egbedi, Corrosion inhibition and adsorption behaviour for aluminuim by extract of Aningeria robusta in HCl solution: Synergistic effect of iodide ions, J. Mater. Environ. Sci. 2 (2011) 60-71. open in new tab
  104. I.B. Obot, N.O. Obi-Egbedi, S.A. Umoren, The synergistic inhibitive effect and some quantum chemical parameters of 2,3-diaminonaphthalene and iodide ions on the hydrochloric acid corrosion of aluminium, Corros. Sci. 51 (2009) 276-282. doi:10.1016/j.corsci.2008.11.013. open in new tab
  105. D.G. Ladha, N.K. Shah, Z. Ghelichkhah, I.B. Obot, F. Khorrami Dehkharghani, J.-Z. Yao, D.D. Macdonald, Experimental and computational evaluation of illicium verum as a novel eco-friendly corrosion inhibitor for aluminium, Mater. Corros. 69 (2018) 125-139. doi:10.1002/maco.201709581. open in new tab
  106. M.J. Pellerite, T.D. Dunbar, L.D. Boardman, E.J. Wood, Effects of Fluorination on Self-Assembled Monolayer Formation from Alkanephosphonic Acids on Aluminum: Kinetics and Structure, J. Phys. Chem. B. 107 (2003) 11726-11736. doi:10.1021/jp0354200. open in new tab
  107. M. Rbaa, M. Galai, Y. Kacimi, M. Ouakki, R. Touir, B. Lakhrissi, M.E. Touhami, Adsorption Properties and Inhibition of Carbon Steel Corrosion in a Hydrochloric Solution by 2-(4,5-diphenyl-4,5-dihydro-1h-imidazol-2- yl)-5-methoxyphenol:, Port. Electrochimica Acta. 35 (2017) 323-338. doi:10.4152/pea.201706323. open in new tab
  108. K. Larouj, K. Ourrak, M. El M'Rabet, H. Zarrok, H. Serrar, M. Boudalia, S. Boukhriss, I. Warad, H. Oudda, R. Touir, Thermodynamic study of corrosion inhibition of carbon steel in acidic solution by new pyrimidothiazine derivative, J. Mater. Environ. Sci. 8 (2017) 3921-3931.
  109. P. Kwolek, A. Kamiński, K. Dychtoń, M. Drajewicz, J. Sieniawski, The corrosion rate of aluminium in the orthophosphoric acid solutions in the presence of sodium molybdate, Corros. Sci. 106 (2016) 208-216. doi:10.1016/j.corsci.2016.02.005. open in new tab
  110. V. Sharma, S. Kumar, S. Bashir, Z. Ghelichkhah, I.B. Obot, A. Kumar, Use of Sapindus (reetha) as corrosion inhibitor of aluminium in acidic medium, Mater. Res. Express. 5 (2018) 076510. doi:10.1088/2053- 1591/aacf76. open in new tab
  111. E.A. Noor, A.H. Al-Moubaraki, Thermodynamic study of metal corrosion and inhibitor adsorption processes in mild steel/1-methyl-4[4′(-X)-styryl pyridinium iodides/hydrochloric acid systems, Mater. Chem. Phys. 110 (2008) 145-154. doi:10.1016/j.matchemphys.2008.01.028. open in new tab
  112. I. Ahamad, R. Prasad, M.A. Quraishi, Thermodynamic, electrochemical and quantum chemical investigation of some Schiff bases as corrosion inhibitors for mild steel in hydrochloric acid solutions, Corros. Sci. 52 (2010) 933-942. doi:10.1016/j.corsci.2009.11.016. open in new tab
  113. M.M. Solomon, H. Gerengi, S.A. Umoren, Carboxymethyl Cellulose/Silver Nanoparticles Composite: Synthesis, Characterization and Application as a Benign Corrosion Inhibitor for St37 Steel in 15% H 2 SO 4 Medium, ACS Appl. Mater. Interfaces. 9 (2017) 6376-6389. doi:10.1021/acsami.6b14153. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 208 times

Recommended for you

Meta Tags