Wpływ domieszkowania na strukturę i właściwości elektryczne niobianu lantanu - Publication - Bridge of Knowledge

Search

Wpływ domieszkowania na strukturę i właściwości elektryczne niobianu lantanu

Abstract

Niniejsza rozprawa przedstawia wyniki badań wpływu domieszkowania izowalencyjnego na strukturę, mikrostrukturę oraz właściwości elektryczne wysokotemperaturowego przewodnika protonowego - niobianu lantanu LaNbO4. Prace badawcze dotyczyły związków domieszkowanych antymonem, arsenem, tantalem lub wanadem (LaNb1-xAxO4 gdzie A = As, Sb, Ta, V; 0 ≤ x ≤ 0,3), które wytworzono metodą reakcji w fazie stałej. Wyniki otrzymane w pracy są pierwszymi, które prezentują wpływ domieszkowania pierwiastkami z grupy 15 układu okresowego, antymonem i arsenem, na właściwości materiału. Najbardziej wszechstronne badania przeprowadzono dla związków domieszkowanych antymonem.

Cite as

Full text

download paper
downloaded 297 times
Publication version
Accepted or Published Version
License
Copyright (Author(s))

Keywords

Details

Category:
Thesis, nostrification
Type:
praca doktorska pracowników zatrudnionych w PG oraz studentów studium doktoranckiego
Language:
Polish
Publication year:
2017
Bibliography: test
  1. związku LNSO30. .................................................................................................................. 100
  2. Rysunki
  3. Rysunek 2.3 Zależność koncentracji defektów od ciśnienia parcjalnego pary wodnej w wysokotemperaturowym przewodniku protonowym ............................................................... 20 open in new tab
  4. Rysunek 2.4 Graficzne przedstawienie mechanizmu przewodnictwa protonowego w ciałach stałych: a) mechanizm nośnikowy, b) mechanizm Grotthussa................................................. 21 open in new tab
  5. Rysunek 2.5 Schemat protonowego ceramicznego ogniwa paliwowego. ................................ 23 open in new tab
  6. Rysunek 2.6 Schemat elektrolizera pary wodnej z elektrolitem przewodzącym protonowo. .. 24 open in new tab
  7. Rysunek 2.7 Schemat pompy wodorowej z elektrolitem przewodzącym protonowo. ............. 25
  8. Rysunek 3.2 Transformacja parametrów komórki elementarnej podczas przemiany fazowej w niobianie lantanu. ..................................................................................................................... 31 open in new tab
  9. Rysunek 4.3 Przykładowy wynik pomiaru metodą spektroskopii impedancyjnej modelowego ciała stałego przewodzącego jonowo. ...................................................................................... 56 open in new tab
  10. Rysunek 4.4 Schematy przykładowych układów zastępczych a) Voigta, b) Maxwella oraz c) drabinkowy reprezentujących wynik symulowanego eksperymentu. Aby lepiej odzwierciedlić warunki rzeczywistego pomiaru, na początku każdego z układów dodano elementy L oraz R1, które reprezentują indukcyjność oraz rezystancję przewodów doprowadzających. ................ 57 open in new tab
  11. Rysunek 6.1 Wyniki badań metodą dyfraktometrii rentgenowskiej a) LaNb1-xSbxO4 170 , b) open in new tab
  12. LaNb1-xAsxO4, c) LaNb1-xVxO4 170 oraz d) LaNb1-xTaxO4. 170 ................................................. 66 open in new tab
  13. Rysunek 6.2 Graficzne porównanie danych pomiarowych (punkty, górny wykres) i dopasowania uzyskanego metodą Rietvelda (linia, górny wykres ) wraz z wykresem różnicowym (wykres dolny) dla próbek a) LaNb0,9Sb0,1O4 oraz b) LaNb0,7Sb0,3O4. 170 ........... 67 open in new tab
  14. Rysunek 6.3 Parametry komórki elementarnej materiałów domieszkowanych a) Sb 170 , b)As, c) dopasowania. ........................................................................... 69 open in new tab
  15. ............................................................................................................................................ 71
  16. Rysunek 6.5 Wynik pomiaru metodą dyfraktometrii rentgenowskiej w różnych temperaturach próbek niobianu lantanu zawierającego a) 5% mol., b) 15% mol. oraz c) 25% mol Sb. 172 .... 72 open in new tab
  17. Rysunek 6.6 Zależność temperaturowa parametrów komórek elementarnych w próbkach domieszkowanych antymonem. 172 ........................................................................................... 73 open in new tab
  18. LaNb0,7Sb0,3O4. ........................................................................................................................ 75
  19. Rysunek 6.9 Zdjęcia mikroskopowe powierzchni LaNb1-xSbxO4 dla a) x=0,15 oraz b) x=0,30. 170 .............................................................................................................................................. 79 open in new tab
  20. Rysunek 6.10 Zdjęcia mikroskopowe powierzchni LaNb1-xVxO4 dla a) x=0,15 oraz b) x=0,30. 170 .............................................................................................................................................. 80 open in new tab
  21. Rysunek 6.12 Wydłużenie względne próbek LaNb1-xSbxO4 w funkcji temperatury. 170 ......... 82 open in new tab
  22. Rysunek 6.13 Temperatura przemiany fazowej w funkcji zawartości Sb. 170 ......................... 83 open in new tab
  23. Rysunek 6.14 Wyniki pomiarów ciepła właściwego niobianu lantanu domieszkowanego antymonem w a) niskich i b) wysokich temperaturach. 181 ...................................................... 84 open in new tab
  24. Rysunek 6.15 Wyniki eksperymentalne Cp oraz odpowiadające im krzywe dopasowania otrzymane z a) pierwszego i b) drugiego etapu obliczeniowego. 181 ........................................ 85 open in new tab
  25. Rysunek 6.17. Przykładowy wynik pomiaru metodą termograwimetrii i skaningowej kalorymetrii różnicowej niobianu lantanu domieszkowanego w 5% mol. antymonem. .......... 87
  26. Rysunek 6.18 Entalpie "drop-solution" oraz tworzenia z tlenków związków LaNb1-xSbxO4 w funkcji koncentracji antymonu. Linia reprezentuje wartość średnią entalpii tworzenia materiałów domieszkowanych w 5-25% mol. 172 ..................................................................... 88 open in new tab
  27. Rysunek 6.19 Wyniki pomiaru metodą spektroskopii impedancyjnej próbki LNSO30 w wilgotnym powietrzu w a) 300°C i b) 800°C. 171 ..................................................................... 92 open in new tab
  28. Rysunek 6.20 Pojemność ziaren i granic międzyziarnowych próbki LNSO30 wyznaczona na podstawie pomiarów impedancyjnych. 171 ............................................................................... 93 open in new tab
  29. Rysunek 6.21 Przewodność całkowita w funkcji temperatury związku a) LNSO10, b) LNSO30, c) LCNSO10 oraz d) LCNSO30. .............................................................................................. 94 open in new tab
  30. Rysunek 6.22 Stosunek przewodności całkowitej w powietrzu zawierającym pary ciężkiej wody do pary wodnej. 171 ......................................................................................................... 95 open in new tab
  31. Rysunek 6.23 Przewodność całkowita w funkcji ciśnienia parcjalnego tlenu związku LNSO30 open in new tab
  32. w warunkach a) mokrych i b) suchych oraz c) LCNSO30 w warunkach suchych. 171 ............ 96 open in new tab
  33. Rysunek 6.24 Zależność przewodności całkowitej próbek LSNO10 i LSNO30 od ciśnienia parcjalnego pary wodnej w 800°C. 171 ..................................................................................... 97 open in new tab
  34. Rysunek 6.26 Przewodność całkowita, ziaren i granic międzyziarnowych niobianu lantanu domieszkowanego antymonem i wapniem. 171 ......................................................................... 98 open in new tab
  35. Rysunek 6.27 Profil koncentracji izotopu 18 O w funkcji odległości od powierzchni próbki LNSO30 poddanej wymianie izotopowej w a) 800°C i b) 900°C. Niebieskie linie pokazują zakres, w którym dominuje dyfuzja na granicach międzyziarnowych. .................................. 101 open in new tab
  36. Rysunek 6.28 Obrazy wytrawionej powierzchni materiału otrzymane na podstawie sygnału z poszczególnych rodzajów jonów wtórnych. 171 ...................................................................... 102 open in new tab
  37. Kingery, W. D., Bowen, H. K., Uhlmann, D. R. Introduction to Ceramics. (Wiley, 1976).
  38. Parrinello, M., Rahman, A., Vashishta, P. Structural Transitions in Superionic Conductors. Phys. Rev. Lett. 50, 1073-1076 (1983). open in new tab
  39. Kamaya, N., Homma, K., Yamakawa, Y., Hirayama, M., Kanno, R., Yonemura, M., Kamiyama, T., Kato, Y., Hama, S., Kawamoto, K., Mitsui, A. A lithium superionic conductor. Nat. Mater. 10, 682-686 (2011). open in new tab
  40. Goodenough, J. B. Oxide-Ion Electrolytes. Annu. Rev. Mater. Res. 33, 91-128 (2003). open in new tab
  41. Marrony, M., Berger, P., Mauvy, F., Grenier, J.-C., Sata, N., Magrasó, A., Haugsrud, R.,
  42. Slater, P. R., Taillades, G., Roziere, J., Dailly, J., Fukatsu, N., Briois, P., Matsumoto, H., Stoukides, M. Proton-Conducting Ceramics. From Fundamentals to Applied Research. (Pan Stanford Publishing, 2016).
  43. Kreuer, K.-D. Proton Conductivity: Materials and Applications. Chem. Mater. 8, 610- 641 (1996). open in new tab
  44. Kreuer, K. D. Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333-359 (2003). open in new tab
  45. Iwahara, H., Asakura, Y., Katahira, K., Tanaka, M. Prospect of hydrogen technology using proton-conducting ceramics. Solid State Ionics 168, 299-310 (2004). open in new tab
  46. Coors, W. G. Protonic ceramic fuel cells for high-efficiency operation with methane. J. Power Sources 118, 150-156 (2003). open in new tab
  47. Norby, T. Proton conduction in oxides. Solid State Ionics 40-41, 857-862 (1990). open in new tab
  48. Iwahara, H. Proton conducting ceramics and their applications. Solid State Ionics 86-88, 9-15 (1996). open in new tab
  49. Oesten, R., Huggins, R. A. Proton conduction in oxides: A review. Ionics (Kiel). 1, 427- 437 (1995). open in new tab
  50. Norby, T. Solid-state protonic conductors: principles, properties, progress and prospects. Solid State Ionics 125, 1-11 (1999). open in new tab
  51. Bojarski, Z., Surowiec, M., Stróż, K., Gigla, M. Krystalografia. (Wydawnictwo Naukowe PWN, 2008).
  52. Kröger, F. A., Vink, H. J. Relations between the Concentrations of Imperfections in Crystalline Solids. Solid State Ionics 3, 307-435 (1956). open in new tab
  53. Smyth, D. M. The Defect Chemistry of Metal Oxides. (Oxford University Press Inc, 2000). open in new tab
  54. Kroger, F. A. Defect Chemistry in Crystalline Solids. Annu. Rev. Mater. Sci. 7, 449-475 (1977). open in new tab
  55. Guldberg, C. M., Waage, P. Studies Concerning Affinity. Forh. Vidensk. i Christ. 35 (1864).
  56. Riess, I. w The CRC Handbook of Solid State Electrochemistry 223-268 (CRC Press, 1996). open in new tab
  57. de Grotthuss, C. J. T. Memoir on the decomposition of water and of the bodies that it holds in solution by means of galvanic electricity. 1805. Biochim. Biophys. Acta 1757, 871-5 (2006). open in new tab
  58. Wachowski, S. w Młodzi naukowcy dla polskiej nauki. Część 10 (red. Kuczera, M.) (Creativetime, 2013).
  59. Wachowski, S. w Nowe trendy w naukach inżynieryjnych 3 (red. Kuczera, M.) (Creativetime, 2012).
  60. Bogusz, W., Krok, F. Elektrolity stałe. Właściwości elektryczne i sposoby ich pomiaru. (WNT, 1995).
  61. Gellings, P. J., Bouwmeester, H. J. M. The CRC Handbook Of Solid State Electrochemistry. 14, (CRC Press, 1996). open in new tab
  62. Balamurugan, C., Lee, D.-W. D., Subramania, A. Preparation and LPG-gas sensing characteristics of p-type semiconducting LaNbO 4 ceramic material. Appl. Surf. Sci. 283, 58-64 (2013). open in new tab
  63. Chen, X., Rieth, L., Miller, M. S., Solzbacher, F. High temperature humidity sensors based on sputtered Y-doped BaZrO3 thin films. Sensors Actuators B Chem. 137, 578- 585 (2009). open in new tab
  64. Traversa, E. Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sensors Actuators B Chem. 23, 135-156 (1995). open in new tab
  65. Grossmann, K., Pavelko, R. G., Barsan, N., Weimar, U. Interplay of H2, water vapor and oxygenat the surface of SnO2 based gas sensors -An operando investigation utilizing deuterated gases. Sensors Actuators B Chem. 166-167, 787-793 (2012). open in new tab
  66. Yamazoe, N. Toward innovations of gas sensor technology. Sensors Actuators B Chem. 108, 2-14 (2005). open in new tab
  67. Kreuer, K. D., Paddison, S. J., Spohr, E., Schuster, M. Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology. open in new tab
  68. Chem. Rev. 104, 4637-4678 (2004). open in new tab
  69. Edwards, P. P., Kuznetsov, V. L., David, W. I. F., Brandon, N. P. Hydrogen and fuel cells: Towards a sustainable energy future. Energy Policy 36, 4356-4362 (2008). open in new tab
  70. Pelletier, L., McFarlan, A., Maffei, N. Ammonia fuel cell using doped barium cerate proton conducting solid electrolytes. J. Power Sources 145, 262-265 (2005). open in new tab
  71. Peterson, D., Winnick, J. A Hydrogen Sulfide Fuel Cell Using a Proton-Conducting Solid Electrolyte. J. Electrochem. Soc. 143, L55 (1996). open in new tab
  72. Tan, W., Zhong, Q., Miao, M., Qu, H. H2S Solid oxide fuel cell based on a modified Barium cerate perovskite proton conductor. Ionics (Kiel). 15, 385-388 (2008). open in new tab
  73. Iwahara, H. Hydrogen pumps using proton-conducting ceramics and their applications. Solid State Ionics 125, 271-278 (1999). open in new tab
  74. Robinson, S., Manerbino, A., Coors, W. G. Galvanic hydrogen pumping in the protonic ceramic perovskite BaCe0. 2Zr0. 7Y0. 1O3− δ. J. Memb. Sci. 446, 99-105 (2013). open in new tab
  75. Iwahara, H., Esaka, T., Uchida, H., Maeda, N. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics 3-4, 359- 363 (1981). open in new tab
  76. Iwahara, H. High temperature proton conducting oxides and their applications to solid electrolyte fuel cells and steam electrolyzer for hydrogen production. Solid State Ionics 28-30, 573-578 (1988). open in new tab
  77. Ipsakis, D., Kraia, T., Marnellos, G. E., Ouzounidou, M., Voutetakis, S., Dittmeyer, R., Dubbe, A., Haas-Santo, K., Konsolakis, M., Figen, H. E., Güldal, N. O., Baykara, S. Z. An electrocatalytic membrane-assisted process for hydrogen production from H2S in Black Sea: Preliminary results. Int. J. Hydrogen Energy 40, 7530-7538 (2015). open in new tab
  78. Schober, T. Applications of oxidic high-temperature proton conductors. Solid State Ionics 162-163, 277-281 (2003). open in new tab
  79. Garagounis, I., Kyriakou, V., Skodra, A., Vasileiou, E., Stoukides, M. Electrochemical Synthesis of Ammonia in Solid Electrolyte Cells. Front. Energy Res. 2, 1-10 (2014). open in new tab
  80. Langguth, J., Dittmeyer, R., Hofmann, H., Tomandl, G. Studies on oxidative coupling of methane using high-temperature proton-conducting membranes. Appl. Catal. A Gen. 158, 287-305 (1997). open in new tab
  81. Hamakawa, S., Hibino, T., Iwahara, H. Electrochemical Hydrogen Permeation in a Proton-Hole Mixed Conductor and Its Application to a Membrane Reactor. J. Electrochem. Soc. 141, 1720 (1994). open in new tab
  82. Sundmacher, K., Rihko-Struckmann, L. K., Galvita, V. Solid electrolyte membrane reactors: Status and trends. Catal. Today 104, 185-199 (2005). open in new tab
  83. Saracco, G., Neomagus, H. W. J. P., Versteeg, G. F., Swaaij, W. P. M. va. High- temperature membrane reactors: potential and problems. Chem. Eng. Sci. 54, 1997-2017 (1999). open in new tab
  84. Forrat, F., Dauge, G., Trevoux, P., Danner, G., Christian, M. Electrolyte solide a base de AlLaO3 application aux piles à combustible. C. R. Hebd. Seances Acad. Sci. 259, 2813- 2816 (1964). open in new tab
  85. Stotz, S., Wagner, C. Die Löslichkeit von Wasserdampf und Wasserstoff in festen Oxiden. Berichte der Bunsengesellschaft für Phys. Chemie 70, 781-788 (1966).
  86. Shores, D. a., Rapp, R. a. Hydrogen Ion (Proton) Conduction in Thoria-Base Solid Electrolytes. J. Electrochem. Soc. 119, 300 (1972). open in new tab
  87. Uchida, H., Maeda, N., Iwahara, H. Relation between proton and hole conduction in SrCeO3-based solid electrolytes under water-containing atmospheres at high temperatures. Solid State Ionics 11, 117-124 (1983). open in new tab
  88. Iwahara, H., Uchida, H., Ono, K., Ogaki, K. Proton Conduction in Sintered Oxides Based on BaCeO3. J. Electrochem. Soc. 135, 529 (1988). open in new tab
  89. Tanner, C. W., Virkar, A. V. Instability of BaCeO[sub 3] in H[sub 2]O-Containing Atmospheres. J. Electrochem. Soc. 143, 1386 (1996). open in new tab
  90. Iwahara, H., Yajima, T., Hibino, T., Ozaki, K., Suzuki, H. Protonic conduction in calcium, strontium and barium zirconates. Solid State Ionics 61, 65-69 (1993). open in new tab
  91. Babilo, P., Uda, T., Haile, S. Processing of yttrium-doped barium zirconate for high proton conductivity. J. Mater. Res. 22, 1322-1330 (2007). open in new tab
  92. Ricote, S., Bonanos, N., Manerbino, A., Coors, W. G. Conductivity study of dense BaCe xZr (0.9-x)Y 0.1O (3-??) prepared by solid state reactive sintering at 1500 °C. Int. J. Hydrogen Energy 37, 7954-7961 (2012). open in new tab
  93. Tong, J., Clark, D., Hoban, M., O'Hayre, R. Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics. Solid State Ionics 181, 496-503 (2010). open in new tab
  94. Kjølseth, C., Fjeld, H., Prytz, Ø., Dahl, P. I., Estournès, C., Haugsrud, R., Norby, T. Space-charge theory applied to the grain boundary impedance of proton conducting BaZr0.9Y0.1O3 -δ. Solid State Ionics 181, 268-275 (2010). open in new tab
  95. Iguchi, F., Sata, N., Tsurui, T., Yugami, H. Microstructures and grain boundary conductivity of BaZr1−xYxO3 (x=0.05, 0.10, 0.15) ceramics. Solid State Ionics 178, 691-695 (2007). open in new tab
  96. Larring, Y., Norby, T. Protons in rare earth oxides. Solid State Ionics 77, 147-151 (1995). open in new tab
  97. Chesnaud, A., Braida, M.-D., Estradé, S., Peiró, F., Tarancón, A., Morata, A., Dezanneau, G. High-temperature anion and proton conduction in RE3NbO7 (RE=La, Gd, Y, Yb, Lu) compounds. J. Eur. Ceram. Soc. (2015). doi:10.1016/j.jeurceramsoc.2015.04.014 open in new tab
  98. Eurenius, K. E. J., Ahlberg, E., Knee, C. S. Proton conductivity in Sm2Sn2O7 pyrochlores. Solid State Ionics 181, 1577-1585 (2010). open in new tab
  99. Bjørheim, T. S., Norby, T., Haugsrud, R. Hydration and proton conductivity in LaAsO4. open in new tab
  100. J. Mater. Chem. 22, 1652 (2012). open in new tab
  101. Haugsrud, R., Norby, T. Proton conduction in rare-earth ortho-niobates and ortho- tantalates. Nat. Mater. 5, 193-196 (2006). open in new tab
  102. Rooksby, H. P., White, E. A. D. The structures of 1:1 compounds of rare earth oxides with niobia and tantala. Acta Crystallogr. 16, 888-890 (1963). open in new tab
  103. Keller, C. Über ternäre Oxide des Niobs und Tantals vom Typ ABO4. Zeitschrift für Anorg. und Allg. Chemier 318, 89-106 (1962). open in new tab
  104. Stubican, V. S. High-Temperature Transitions in Rare-Earth Niobates and TantaIates. J. Am. Ceram. Soc. 47, 55-58 (1964). open in new tab
  105. Tsunekawa, S., Takei, H., Ishigame, M. Study on the room temperature phase of LaNbO4 crystals. Mater. Res. Bull. 12, 1087-1094 (1977). open in new tab
  106. Brixner, L. H., Whitney, J. F., Zumsteg, F. C., Jones, G. A. Ferroelasticity in the LnNbO4-type rare earth niobates. Mater. Res. Bull. 12, 17-24 (1977). open in new tab
  107. Takei, H., Tsunekawa, S. Growth and properties of LaNbO4 and NdNbO4 single crystals. J. Cryst. Growth 38, 55-60 (1977). open in new tab
  108. Tsunekawa, S., Takei, H. Domain Switching Behaviour of Ferroelastic LaNbO 4 and NdNbO 4. J. Phys. Soc. Japan 40, 1523-1524 (1976). open in new tab
  109. Tsunekawa, S., Takei, H. Twinning structure of ferroelastic LaNbO4 and NdNbO4 crystals. Phys. Status Solidi 50, 695-702 (1978). open in new tab
  110. Blasse, G., Bril, A. Luminescence phenomena in compounds with fergusonite structure. open in new tab
  111. J. Lumin. 3, 109-131 (1970). open in new tab
  112. Blasse, G. Luminescence processes in niobates with fergusonite structure. J. Lumin. 14, 231-233 (1976). open in new tab
  113. Kim, D. W., Kwon, D. K., Yoon, S. H., Hong, K. S. Microwave dielectric properties of rare-earth ortho-niobates with ferroelasticity. J. Am. Ceram. Soc. 89, 3861-3864 (2006). open in new tab
  114. Haugsrud, R., Norby, T. High-temperature proton conductivity in acceptor-doped LaNbO 4. Solid State Ionics 177, 1129-1135 (2006). open in new tab
  115. Tsunekawa, S., Kamiyama, T., Sasaki, K., Asano, H., Fukuda, T. Precise structure analysis by neutron diffraction for R NbO 4 and distortion of NbO 4 tetrahedra. Acta Crystallogr. Sect. A Found. Crystallogr. 49, 595-600 (1993). open in new tab
  116. Huse, M., Skilbred, A. W. B., Karlsson, M., Eriksson, S. G., Norby, T., Haugsrud, R., Knee, C. S. Neutron diffraction study of the monoclinic to tetragonal structural transition in LaNbO 4 and its relation to proton mobility. J. Solid State Chem. 187, 27-34 (2012). open in new tab
  117. International Tables for Crystallography. A, (International Union of Crystallography, 2015). open in new tab
  118. Fjeld, H., Toyoura, K., Haugsrud, R., Norby, T. Proton mobility through a second order phase transition: theoretical and experimental study of LaNbO4. Phys. Chem. Chem. open in new tab
  119. Phys. 12, 10313-10319 (2010). open in new tab
  120. Aldred, A. T. Unusual cell volume behavior in the LaNb1−xVxO4 system. Mater. Lett. 1, 197-199 (1983). open in new tab
  121. Hadidi, K., Hancke, R., Norby, T., Gunnaes, A. E., Løvvik, O. M. Atomistic study of LaNbO4; surface properties and hydrogen adsorption. Int. J. Hydrogen Energy 37, 6674- 6685 (2012). open in new tab
  122. Cavallaro, A., Solís, C., Garcia, P. R., Ballesteros, B., Serra, J. M., Santiso, J. L. Epitaxial films of the proton-conducting Ca-doped LaNbO4 material and a study of their charge transport properties. Solid State Ionics 216, 25-30 (2012). open in new tab
  123. Solís, C., Serra, J. M. Adjusting the conduction properties of La0.995Ca0.005NbO4−δ by doping for proton conducting fuel cells electrode operation. Solid State Ionics 190, 38-45 (2011). open in new tab
  124. Momma, K., Izumi, F. VESTA -Visualization for Electronic and STuctural Analysis software. (2014). open in new tab
  125. David, W. I. F. The high-temperature paraelastic structure of LaNbO4. Mater. Res. Bull. 18, 749-756 (1983). open in new tab
  126. Jaeger, G. The Ehrenfest Classification of Phase Transitions: Introduction and Evolution. Arch. Hist. Exact Sci. 53, 51-81 (1998). open in new tab
  127. Sarin, P., Hughes, R. W., Lowry, D. R., Apostolov, Z. D., Kriven, W. M. High- Temperature Properties and Ferroelastic Phase Transitions in Rare-Earth Niobates (LnNbO 4 ). J. Am. Ceram. Soc. 97, 3307-3319 (2014). open in new tab
  128. Aizu, K. Phenomenological lattice-dynamical theory of ferroelasticity. J. Phys. Chem. Solids 32, 1959-1969 (1971). open in new tab
  129. Jian, L., Wayman, C. M. Monoclinic-to-Tetragonal Phase Transformation in a Ceramic Rare-Earth Orthoniobate, LaNbO 4. J. Am. Ceram. Soc. 80, 803-806 (1997). open in new tab
  130. Wood, I. G. Temperature dependence of domain walls in LaNbO 4 and their relation to the spontaneous strain. Phase Transitions 9, 269-279 (1987). open in new tab
  131. David, W. I. F. High Resolution Neutron Powder Diffraction Studies of the Ferroelastic Phase Transition in LaNbO4. MRS Proc. 166, 203 (1989). open in new tab
  132. Mokkelbost, T., Lein, H. L., Vullum, P. E., Holmestad, R., Grande, T., Einarsrud, M.-A. Thermal and mechanical properties of LaNbO4-based ceramics. Ceram. Int. 35, 2877- 2883 (2009). open in new tab
  133. Vullum, F., Nitsche, F., Selbach, S. M., Grande, T. Solid solubility and phase transitions in the system LaNb1−xTaxo4. J. Solid State Chem. 181, 2580-2585 (2008). open in new tab
  134. Santibáñez-Mendieta, A. B., Fabbri, E., Licoccia, S., Traversa, E. Tailoring phase stability and electrical conductivity of Sr0.02La0.98Nb1-xTaxO4 for intermediate temperature fuel cell proton conducting electrolytes. Solid State Ionics 216, 6-10 (2012). open in new tab
  135. Rovati, M. Directions of auxeticity for monoclinic crystals. Scr. Mater. 51, 1087-1091 (2004). open in new tab
  136. Stavroulakis, G. E. Auxetic behaviour: appearance and engineering applications. Phys. status solidi 242, 710-720 (2005). open in new tab
  137. Arai, M., Wang, Y. X., Kohiki, S., Matsuo, M., Shimooka, H., Shishido, T., Oku, M. Dielectric Property and Electronic Structure of LaNbO 4. Jpn. J. Appl. Phys. 44, 6596- 6599 (2005). open in new tab
  138. Kuwabara, A., Haugsrud, R., Stølen, S., Norby, T. Local condensation around oxygen vacancies in t-LaNbO4 from first principles calculations. Phys. Chem. Chem. Phys. 11, 5550-5553 (2009). open in new tab
  139. Blasse, G., Brixner, L. H. Ultraviolet emission from ABO4-type niobates, tantalates and tungstates. Chem. Phys. Lett. 173, 409-411 (1990). open in new tab
  140. Wood, I. G. Spontaneous birefringence of ferroelastic BiVO 4 and LaNBO 4 between 10K and T c. J. Phys. C Solid State Phys. 17, L539-L543 (1984). open in new tab
  141. Hsiao, Y. J., Fang, T. H., Chang, Y. S., Chang, Y. H., Liu, C. H., Ji, L. W., Jywe, W. Y. Structure and luminescent properties of LaNbO4 synthesized by sol-gel process. J. open in new tab
  142. Lumin. 126, 866-870 (2007).
  143. Sun, P., Dai, P., Yang, J., Zhao, C., Zhang, X. Enhanced upconversion luminescence induced by structrual evolution of lanthanum niobate phosphor. Ceram. Int. 41, 1-8 (2014). open in new tab
  144. Lee, H. W., Park, J. H., Nahm, S., Kim, D. W., Park, J. G. Low-temperature sintering of temperature-stable LaNbO4 microwave dielectric ceramics. Mater. Res. Bull. 45, 21-24 (2010). open in new tab
  145. Haugsrud, R., Norby, T. High-Temperature Proton Conductivity in Acceptor-Substituted Rare-Earth Ortho-Tantalates, LnTaO 4. J. Am. Ceram. Soc. 90, 1116-1121 (2007). open in new tab
  146. Magrasó, A., Fontaine, M.-L., Bredesen, R., Haugsrud, R., Norby, T. Cathode compatibility, operation, and stability of LaNbO4-based proton conducting fuel cells. Solid State Ionics 262, 382-387 (2014). open in new tab
  147. Syvertsen, G. E., Magrasó, A., Haugsrud, R., Einarsrud, M.-A., Grande, T. The effect of cation non-stoichiometry in LaNbO4 materials. Int. J. Hydrogen Energy 37, 8017-8026 (2012). open in new tab
  148. Mather, G. C., Fisher, C. A. J., Islam, M. S. Defects, Dopants, and Protons in LaNbO 4. Chem. Mater. 22, 5912-5917 (2010). open in new tab
  149. Mokkelbost, T., Kaus, I., Haugsrud, R., Norby, T., Grande, T., Einarsrud, M.-A. High- Temperature Proton-Conducting Lanthanum Ortho-Niobate-Based Materials. Part II: Sintering Properties and Solubility of Alkaline Earth Oxides. J. Am. Ceram. Soc. 91, 879-886 (2008). open in new tab
  150. Norby, T., Magrasó, A. On the development of proton ceramic fuel cells based on Ca- doped LaNbO4 as electrolyte. J. Power Sources 282, 28-33 (2015). open in new tab
  151. Bi, Z., Peña-Martínez, J., Kim, J.-H., Bridges, C. A., Huq, A., Hodges, J. P., Paranthaman, M. P. Effect of Ca doping on the electrical conductivity of the high temperature proton conductor LaNbO4. Int. J. Hydrogen Energy 37, 12751-12759 (2012). open in new tab
  152. Cao, Y., Tan, Y., Yan, D., Chi, B., Pu, J., Jian, L. Electrical conductivity of Zn-doped high temperature proton conductor LaNbO4. Solid State Ionics 278, 152-156 (2015). open in new tab
  153. Cao, Y., Chi, B., Pu, J., Jian, L. Effect of Ce and Yb co-doping on conductivity of LaNbO 4. J. Eur. Ceram. Soc. 34, 1981-1988 (2014). open in new tab
  154. Mielewczyk-Gryn, A., Gdula-Kasica, K., Kusz, B., Gazda, M. High temperature monoclinic-to-tetragonal phase transition in magnesium doped lanthanum ortho-niobate. open in new tab
  155. Ceram. Int. 39, 4239-4244 (2013). open in new tab
  156. Syvertsen, G. E., Estournès, C., Fjeld, H., Haugsrud, R., Einarsrud, M.-A., Grande, T. Spark Plasma Sintering and Hot Pressing of Hetero-Doped LaNbO4. J. Am. Ceram. Soc. 95, 1563-1571 (2012). open in new tab
  157. Ivanova, M., Ricote, S., Meulenberg, W. A., Haugsrud, R., Ziegner, M. Effects of A- and B-site (co-)acceptor doping on the structure and proton conductivity of LaNbO4. Solid State Ionics 213, 45-52 (2012). open in new tab
  158. Fjeld, H., Kepaptsoglou, D. M., Haugsrud, R., Norby, T. Charge carriers in grain boundaries of 0.5% Sr-doped LaNbO4. Solid State Ionics 181, 104-109 (2010). open in new tab
  159. Huse, M., Norby, T., Haugsrud, R. Effects of A and B site acceptor doping on hydration and proton mobility of LaNbO4. Int. J. Hydrogen Energy 37, 8004-8016 (2012). open in new tab
  160. Ivanova, M. E., Meulenberg, W. a., Palisaitis, J., Sebold, D., Solís, C., Ziegner, M., Serra, J. M., Mayer, J., Hänsel, M., Guillon, O. Functional properties of La0.99X0.01Nb0.99Al0.01O4−δ and La0.99X0.01Nb0.99Ti0.01O4−δ proton conductors where X is an alkaline earth cation. J. Eur. Ceram. Soc. 35, 1-15 (2014). open in new tab
  161. Mielewczyk-Gryn, A., Wachowski, S., Zagórski, K., Jasiński, P., Gazda, M. Characterization of magnesium doped lanthanum orthoniobate synthesized by molten salt route. Ceram. Int. 41, 7847-7852 (2015). open in new tab
  162. Mokkelbost, T., Andersen, Ø., Strøm, R. A., Wiik, K., Grande, T., Einarsrud, M.-A. High-Temperature Proton-Conducting LaNbO 4 -Based Materials: Powder Synthesis by Spray Pyrolysis. J. Am. Ceram. Soc. 90, 3395-3400 (2007). open in new tab
  163. Brandão, A. D., Gracio, J., Mather, G. C., Kharton, V. V., Fagg, D. P. B-site substitutions in LaNb1−xMxO4−δ materials in the search for potential proton conductors (M=Ga, Ge, Si, B, Ti, Zr, P, Al). J. Solid State Chem. 184, 863-870 (2011). open in new tab
  164. Bi, Z., Bridges, C. A., Kim, J.-H., Huq, A., Paranthaman, M. P. Phase stability and electrical conductivity of Ca-doped LaNb1−xTaxO4−δ high temperature proton conductors. J. Power Sources 196, 7395-7403 (2011). open in new tab
  165. Brandaõ, A. D., Antunes, I., Frade, J. R., Torre, J., Kharton, V. V., Fagg, D. P. Enhanced Low-Temperature Proton Conduction in Sr 0.02 La 0.98 NbO 4−δ by Scheelite Phase Retention. Chem. Mater. 22, 6673-6683 (2010). open in new tab
  166. Aldred, A. T., Chan, S.-K., Grimsditch, M. H., Nevitt, M. V. Displacive Phase Transformation in Vanadium -Substituted Lanthanum Niobate. MRS Proc. 24, 81 (1983). open in new tab
  167. Nevitt, M., Knapp, G. Phonon properties of vanadium-substituted lanthanum niobate derived from heat-capacity measurements. J. Phys. Chem. Solids 47, 501-505 (1986). open in new tab
  168. Errandonea, D., Manjon, F. Pressure effects on the structural and electronic properties of ABX 4 scintillating crystals. Prog. Mater. Sci. 53, 711-773 (2008). open in new tab
  169. Shannon, R. D., Prewitt, C. T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 25, 925-946 (1969). open in new tab
  170. Massalski, J. Fizyka dla inżynierów 2. Fizyka współczesna. (WNT, 1975).
  171. Langford, J. I., Louër, D. Powder diffraction. Reports Prog. Phys. 59, 131-234 (1996). open in new tab
  172. Young, R. A. The Rietveld Method. (IUCr, 1995).
  173. Speakman, S. A. Precission and Accuracy. Massachusets Inst. Technol. (2010).
  174. Toby, B. H. R factors in Rietveld analysis: How good is good enough? Powder Diffr. 21, 67-70 (2006). open in new tab
  175. McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D., Scardi, P. Rietveld refinement guidelines. J. Appl. Crystallogr. 32, 36-50 (1999). open in new tab
  176. Sakata, M., Cooper, M. J. An analysis of the Rietveld refinement method. J. Appl. Crystallogr. 12, 554-563 (1979). open in new tab
  177. Gražulis, S., Daškevič, A., Merkys, A., Chateigner, D., Lutterotti, L., Quirós, M., Serebryanaya, N. R., Moeck, P., Downs, R. T., Le Bail, A. Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world- wide collaboration. Nucleic Acids Res. 40, D420-7 (2012). open in new tab
  178. Rodriguez-Carvajal, J. Recent developments for the program FULLPROF. Comm. powder Diffr. 26, 12-19 (2001). open in new tab
  179. Degen, T., Sadki, M., Bron, E., Konig, U., Nenert, G. The HighScore suite. Powder Diffr. 29, S13-S18 (2014). open in new tab
  180. Arodz, H., Dziarmaga, J., Zurek, W. H. Patterns of Symmetry Breaking. (Springer Netherlands, 2003). doi:10.1007/978-94-007-1029-0 open in new tab
  181. Mnyukh, Y. Second-order phase transitions, L. Landau and his successors. Am. J. Condens. Matter Phys. 3, 25-30 (2013).
  182. Sznajd-Weron, K. Teoria przejść fazowych i zjawiska krytyczne. (Uniwersytet Wrocławski Instytut Fizyki Teoretycznej, 2012).
  183. Nobel Media AB. The Nobel Prize in Physics 1962. Nobelprize.org (2013). na <http://www.nobelprize.org/nobel_prizes/physics/laureates/1962> open in new tab
  184. Mielewczyk-Gryn, A. Rozprawa doktorska: Właściwości strukturalne i transportowe ceramicznego przewodnika protonowego -domieszkowanego niobanu lantanu. (Politechnika Gdańska, 2013).
  185. Aizu, K. Determination of the State Parameters and Formulation of Spontaneous Strain for Ferroelastics. J. Phys. Soc. Japan 28, 706-716 (1970). open in new tab
  186. Schlenker, J. L., Gibbs, G. V., Boisen, M. B. Strain-tensor components expressed in terms of lattice parameters. Acta Crystallogr. Sect. A 34, 52-54 (1978). open in new tab
  187. Wagner, C. D., Riggs, W. M., Davis, L. E., Moulder, J. F., Muilenberg, G. E. Handbook of X-ray photoelectron spectroscopy. (Perkin-Elmer Corporation, 1979).
  188. Kwok, R. W. M. XPS Peak v 4.1. (2009).
  189. A. Barbacki. Mikroskopia elektronowa. (Wydawnictwo Politechniki Poznańskiej, 2007).
  190. Carter, B., Norton, G. Ceramic Materials. Ceramic materils science and engineering (Springer New York, 2007). doi:10.1007/978-0-387-46271-4 open in new tab
  191. Gopal, E. S. R. Specific Heats at Low Temperatures. Specific Heats at Low Temperatures (Springer US, 1966). doi:10.1007/978-1-4684-9081-7 open in new tab
  192. Kittel, C. Wstęp do Fizyki Ciała Stałego. (Wydawnictwo Naukowe PWN, 1999).
  193. Hwang, J. S., Lin, K. J., Tien, C. Measurement of heat capacity by fitting the whole temperature response of a heat-pulse calorimeter. Rev. Sci. Instrum. 68, 94 (1997). open in new tab
  194. Hołyst, R., Poniewierski, A., Ciach, A. Termodynamika dla chemików, fizyków i inżynierów. (Instytu Chemii Fizycznej PAN i Szkoła Nauk Ścisłych, 2003).
  195. Navrotsky, A. Progress and new directions in high temperature calorimetry. Phys. Chem. Miner. 2, 89-104 (1977). open in new tab
  196. Navrotsky, A. Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24, 222-241 (1997). open in new tab
  197. Navrotsky, A. Progress and New Directions in Calorimetry: A 2014 Perspective. J. Am. Ceram. Soc. 97, 3349-3359 (2014). open in new tab
  198. Trzaska, M., Trzeska, Z. Elektrochemiczna spektroskopia impedancyjna w inżynierii materiałowej. (Oficyna Wydawnicza Politechniki Warszawskiej, 2010).
  199. Lasia, A. Electrochemical Impedance Spectroscopy and its Applications. (Springer New York, 2014). doi:10.1007/978-1-4614-8933-7 open in new tab
  200. Zajt, T. Metody woltoamperometryczne i elektrochemiczna spektroskopia impedancyjna. (Wydawnictwo Gdańskie, 2001).
  201. Diard, J.-P., Gorrec, B., Le Montella, C. Handbook of Electrochemical Impedance Spectroscopy. Electrical circuits containing CPEs. (BioLogic, 2013). na <http://www.bio-logic.info/potentiostat-electrochemistry-ec-lab/apps-literature/eis- literature/hanbook-of-eis/> open in new tab
  202. Boukamp, B. A Nonlinear Least Squares Fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics 20, 31-44 (1986). open in new tab
  203. Haile, S. M., West, D. L., Campbell, J. The role of microstructure and processing on the proton conducting properties of gadolinium-doped barium cerate. J. Mater. Res. 13, 1576-1595 (1998). open in new tab
  204. Bonanos, N., Huijser, A., Poulsen, F. W. H/D isotope effects in high temperature proton conductors. Solid State Ionics 275, 9-13 (2015). open in new tab
  205. Bonanos, N. Oxide-based protonic conductors: point defects and transport properties. Solid State Ionics 145, 265-274 (2001). open in new tab
  206. Sutija, D. P., Norby, T., Bjornbom, P. Transport number determination by the concentration-cell/open-circuit voltage method for oxides with mixed electronic, ionic and protonic conductivity. Solid State Ionics 77, 167-174 (1995). open in new tab
  207. Norby, T. GasMix version 0.6. NorECS (2013). open in new tab
  208. Boukamp, B. A package for impedance/admittance data analysis. Solid State Ionics 18- 19, 136-140 (1986). open in new tab
  209. Yates, J. R. Mass spectrometry. Trends in Genetics 16, (2000). open in new tab
  210. Vickerman, J. C., Gilmore, I. S. Surface Analysis-The Principal Techniques. Techniques (John Wiley & Sons Ltd, 2009). doi:10.1002/9780470721582 open in new tab
  211. Crank, J. The mathematics of diffusion. (Oxford University Press Inc, 1975).
  212. Wachowski, S., Mielewczyk-Gryn, A., Gazda, M. Effect of isovalent substitution on microstructure and phase transition of LaNb1−xMxO4 (M=Sb, V or Ta; x=0.05-0.3). J. Solid State Chem. 219, 201-209 (2014). open in new tab
  213. Wachowski, S., Mielewczyk-Gryń, A., Zagórski, K., Li, C., Jasiński, P., Skinner, S. J., Haugsrud, R., Gazda, M. Influence of Sb-substitution on ionic transport in lanthanum orthoniobates. J. Mater. Chem. A 4, 11696-11707 (2016). open in new tab
  214. Mielewczyk-Gryn, A., Wachowski, S., Lilova, K. I., Guo, X., Gazda, M., Navrotsky, A. Influence of antimony substitution on spontaneous strain and thermodynamic stability of lanthanum orthoniobate. Ceram. Int. 41, 2128-2133 (2015). open in new tab
  215. Welch, H. V., Duschak, L. H. The vapor pressure of Arsenic Trioxide. Dep. Inter. Bur. mines. Tech. Pap. (1915).
  216. Saines, P. J., Kennedy, B. J., Elcombe, M. M. Structural phase transitions and crystal chemistry of the series Ba2LnB′O6 (Ln=lanthanide and B′=Nb5+ or Sb5+). J. Solid State Chem. 180, 401-409 (2007). open in new tab
  217. Tresvyatskii, S. G., Lopato, L. M. Calculation and determination of liquidus curves in the oxide systems La2O3-MgO, Y2O3-MgO, and Sc2O3-MgO. Sov. Powder Metall. open in new tab
  218. Met. Ceram. 2, 366-369 (1963). open in new tab
  219. Orr, R. L. High-temperature Heat Contents of Tantalum and Niobium Oxides. J. Am. Chem. Soc. 75, 2808-2809 (1953). open in new tab
  220. Orman, R. G., Holland, D. Thermal phase transitions in antimony (III) oxides. J. Solid State Chem. 180, 2587-2596 (2007). open in new tab
  221. Holtzberg, F., Reisman, A., Berry, M., Berkenblit, M. Reactions of the Group VB Pentoxides with Alkali Oxides and Carbonates. II. Phase Diagram of the System K 2 CO 3 -V 2 O 5. J. Am. Chem. Soc. 78, 1536-1540 (1956). open in new tab
  222. Reisman, A., Holtzberg, F., Berkenblit, M., Berry, M. Reactions of the Group VB Pentoxides with Alkali Oxides and Carbonates. III. Thermal and X-Ray Phase Diagrams of the System K 2 O or K 2 CO 3 with Ta 2 O 5. J. Am. Chem. Soc. 78, 4514-4520 (1956). open in new tab
  223. Cho, K., Lee, J., Lim, J.-S., Lim, H., Lee, J., Park, S., Yoo, C.-Y., Kim, S.-T., Chung, U.-I., Moon, J.-T. Low temperature crystallized Ta2O5/Nb2O5 bi-layers integrated into RIR capacitor for 60 nm generation and beyond. Microelectron. Eng. 80, 317-320 (2005). open in new tab
  224. Mielewczyk-Gryn, A., Wachowski, S., Strychalska, J., Zagórski, K., Klimczuk, T., Navrotsky, A., Gazda, M. Heat capacities and thermodynamic properties of antimony substituted lanthanum orthoniobates. Ceram. Int. 42, 7054-7059 (2016). open in new tab
  225. Iorish, V., Jungmann, V. Baza Stałych Cieplnych Substancji "Термические Константы Веществ". Rosyjska Akademia Nauk oraz Uniwersytet Moskiewski (2016). na <http://www.chem.msu.su/cgi-bin/tkv.pl?show=welcome.html>
  226. Parlinski, K., Hashi, Y., Tsunekawa, S., Kawazoe, Y. Computer simulation of ferroelastic phase transition in LaNbO4. J. Mater. Res. 12, 2428-2437 (1997). open in new tab
  227. Senyshyn, A., Kraus, H., Mikhailik, V. B., Vasylechko, L., Knapp, M. Thermal properties of CaMoO4 : Lattice dynamics and synchrotron powder diffraction studies. open in new tab
  228. Phys. Rev. B 73, 14104 (2006). open in new tab
  229. Porto, S. P. S., Scott, J. F. Raman spectra of CaWO4, SrWO4, CaMoo4, and SrMoO4. Phys. Rev. 157, 716-719 (1967). open in new tab
  230. Ushakov, S. V., Helean, K. B., Navrotsky, A., Boatner, L. A. Thermochemistry of rare- earth orthophosphates. J. Mater. Res. 16, 2623-2633 (2001). open in new tab
  231. Chater, R. J., Carter, S., Kilner, J. A., Steele, B. C. H. Development of a novel SIMS technique for oxygen self-diffusion and surface exchange coefficient measurements in oxides of high diffusivity. Solid State Ionics 53-56, 859-867 (1992). open in new tab
  232. Zagórski, K., Czarnowska, M., Czoska, P., Dzierzgowski, K., Wachowski, S., Mielewczyk-Gryń, A., Gazda, M. Synthesis of tetragonal LaNbO4 nanopowders. w Bulletin of the Polish Hydrogen and Fuel Cell Association (red. Molenda, J.) 75 (AGH, 2015).
  233. Miruszewski, T., Gdaniec, P., Karczewski, J., Bochentyn, B., Szaniawska, K., Kupracz, P., Prześniak-Welenc, M., Kusz, B. Synthesis and structural properties of (Y, Sr)(Ti, Fe, Nb)O3−δ perovskite nanoparticles fabricated by modified polymer precursor method. Solid State Sci. 59, 1-6 (2016). open in new tab
  234. Wang, Z., Liang, H., Zhou, L., Wang, J., Gong, M., Su, Q. NaEu0.96Sm0.04(MoO4)2 as a promising red-emitting phosphor for LED solid-state lighting prepared by the Pechini process. J. Lumin. 128, 147-154 (2008). open in new tab
Verified by:
Gdańsk University of Technology

seen 137 times

Recommended for you

Meta Tags