Search results for: on-line ramsey number - Bridge of Knowledge

Search

Search results for: on-line ramsey number

Best results in : Research Potential Pokaż wszystkie wyniki (108)

Search results for: on-line ramsey number

Best results in : Business Offer Pokaż wszystkie wyniki (37)

Search results for: on-line ramsey number

  • Pracownia Fotogrametrii i Teledetekcji Niskiego Pułapu

    Business Offer

    W pracowni prowadzone są badania naukowe oraz zajęcia dydaktyczne z zakresu fotogrametrii cyfrowej i teledetekcji, szczególnie z niskiego pułapu czyli z bezzałogowych statków powietrznych. W ramach działań pracowni prowadzone są pomiary terenowe z użyciem nowoczesnych technik pomiarowych i bezzałogowych statków powietrznych, szkolenie lotnicze operatorów bezzałogowych statków powietrznych. Prace kameralne realizowane są na nowoczesnym...

  • Środowiskowe Laboratorium Technologii Bezprzewodowych

    Środowiskowe Laboratorium Technologii Bezprzewodowych powstało w ramach realizacji projektu CZT Centrum Zaawansowanych Technologii POMORZE i mieści się w Katedrze Inżynierii Mikrofalowej i Antenowej na Wydziale Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej. Laboratorium zostało wyposażone w specjalistyczne zaplecze aparaturowe, które w połączeniu z kompetencjami naukowymi i technologicznymi kadry pozwala na...

  • Laboratorium Automatyki Napędu Elektrycznego

    Programowalne układy napędowe zasilane przekształtnikowo ze sterowaniem mikroprocesorowym

Other results Pokaż wszystkie wyniki (4464)

Search results for: on-line ramsey number

  • A NOTE ON ON-LINE RAMSEY NUMBERS FOR QUADRILATERALS

    Publication

    - Opuscula Mathematica - Year 2014

    We consider on-line Ramsey numbers defined by a game played between two players, Builder and Painter. In each round Builder draws an the edge and Painter colors it either red or blue, as it appears. Builder’s goal is to force Painter to create a monochromatic copy of a fixed graph H in as few rounds as possible. The minimum number of rounds (assuming both players play perfectly) is the on-line Ramsey number \widetilde{r}(H) of...

    Full text available to download

  • On-line Ramsey Numbers of Paths and Cycles

    Publication

    - ELECTRONIC JOURNAL OF COMBINATORICS - Year 2015

    Consider a game played on the edge set of the infinite clique by two players, Builder and Painter. In each round, Builder chooses an edge and Painter colours it red or blue. Builder wins by creating either a red copy of $G$ or a blue copy of $H$ for some fixed graphs $G$ and $H$. The minimum number of rounds within which Builder can win, assuming both players play perfectly, is the \emph{on-line Ramsey number} $\tilde{r}(G,H)$. In...

    Full text available to download

  • Application of Regression Line to Obtain Specified Number of Points in Reduced Large Datasets

    Publication

    - Year 2016

    Modern measurement techniques like scanning technology or sonar measurements, provide large datasets, which are a reliable source of information about measured object, however such datasets are sometimes difficult to develop. Therefore, the algorithms for reducing the number of such sets are incorporated into their processing. In the reduction algorithms based on the...

    Full text to download in external service

  • Liczby Ramseya on-line dla różnych klas grafów

    Publication

    - Year 2023

    Rozpatrujemy grę rozgrywaną na nieskończonej liczbie wierzchołków, w której każda runda polega na wskazaniu krawędzi przez jednego gracza - Budowniczego oraz pokolorowaniu jej przez drugiego gracza - Malarkę na jeden z dwóch kolorów, czerwony lub niebieski. Celem Budowniczego jest zmuszenie Malarki do stworzenia monochromatycznej kopii wcześniej ustalonego grafu H w jak najmniejszej możliwej liczbie ruchów. Zakładamy, że gracze...

    Full text available to download

  • On some open questions for Ramsey and Folkman numbers

    Publication
    • S. Radziszowski
    • X. Xiaodong

    - Year 2016

    We discuss some of our favorite open questions about Ramsey numbers and a related problem on edge Folkman numbers. For the classical two-color Ramsey numbers, we first focus on constructive bounds for the difference between consecutive Ramsey numbers. We present the history of progress on the Ramsey number R(5,5) and discuss the conjecture that it is equal to 43.